摘要
主要考虑一类来源于电流体动力学中的由非线性非局部方程组耦合而成的耗散型系统的初值问题.利用Lorentz空间中广义L^p-L^q热半群估计和广义Hardy-Littlewood-Sobolev不等式,首先证明了该系统在Lorentz空间中自相似解的整体存在性和唯一性,然后建立了自相似解当时间趋于无穷时的渐近稳定性.因为Lorentz空间包含了具有奇性的齐次函数,因次上述结果保证了具有奇性的初值所对应的自相似解的整体存在性和渐近稳定性.
The authors consider a dissipative system of nonlinear and nonlocal equations modeling the flow of electrohydrodynamics in the whole space R^n,n≥3.By making use of the generalized L^p-L^q heat semigroup estimates in the Lorentz spaces and the generalized Hardy-Littlewood-Sobolev inequality,the authors first prove global existence and uniqueness of self-similar solution in the Lorentz spaces,then establish the asymptotic stability of selfsimilar solutions as time goes to infinity.Since the authors Cope with the initial data in the Lorentz spaces,the existence of self-similar solutions provided the initial data are small homogeneous functions.
作者
赵继红
李秀蓉
ZHAO Jihong;LI Xiurong(School of Mathematics and Information Science,Bao ji University of Arts and Sciences,Bao ji 721013,Shaanxi,China;College of Science,Northwest A&F University,Yangling 712100,Shaanxi,China)
出处
《数学年刊(A辑)》
CSCD
北大核心
2019年第1期55-78,共24页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11501453)
陕西省自然科学基金(No.2018JM1004
No.2017JM1016)的资助