期刊文献+

基于高斯模型的多重超声回波信号重数估计 被引量:4

Estimating the number of multiple echo signals based on the Gaussian ultrasonic echo model
下载PDF
导出
摘要 精确估计多层材料超声回波信号的重数在超声检测上有着要意义。将小波变换方法用于多层材料超声回波参数估计中,根据高斯模型以超声回波信号的小波变换为基础、利用智能人工蜂群算法,估计出多重超声回波信号的各个参数。采用Akaike Information Criterion(AIC)准则,对叠加的两重和三重超声回波信号的重数进行估计。仿真结果表明,本算法可以实现多重超声回波信号重数的有效估计。用实验测试获得的回波对算法的性能进行了验证,结果证明了该算法的可行性和实用性。 Estimating the number of multilayer material ultrasonic echo signals is a important problem in ultrasonic detection.The artificial intelligence bee colony algorithm is applied to estimate the parameters of ultrasonic echoes for multilayer materials,which using the wavelet transform of ultrasonic echoes based on Gaussian ultrasonic echoes model.According to the results of estimated parameters of echo signals,the Akaike information criterion(AIC)is used to estimate the number of the superimposed dual and triple ultrasonic echoes.The simulation results show that the algorithm can accurately estimate the number of multiple ultrasonic echoes.The proposed method is also verified by experimental echoes.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期30-35,共6页 Journal of Shaanxi Normal University:Natural Science Edition
基金 陕西省自然科学基金资助项目(2012JM1013) 西安市科技攻关资助项目(CX12166(3)) 中央高校基本科研业务费专项资金项目(GK201302049)
关键词 超声回波信号 小波变换 高斯回波模型 人工智能蜂群算法 AIC准则 ultrasonic echo signals wavelet transform Gaussian echo model artificial intelligence bee colony algorithm Akaike information criterion(AIC)
  • 相关文献

参考文献6

  • 1张德丰,等编著.MATLAB小波分析[M]. 机械工业出版社, 2011
  • 2Andrew White,Jung-Wuk Hong,Soonsung Hong,Jongeun Choi.Parameter estimation for wavelet transformed ultrasonic signals[J]. NDT and E International . 2010 (1)
  • 3Dervis Karaboga,Bahriye Basturk.A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization . 2007 (3)
  • 4Chien-Fu Wu.Asymptotic Theory of Nonlinear Least Squares Estimation. The Annals of Statistics . 1981
  • 5Jongeun Choi,Jung-Wuk Hong.Characterization of wavelet coefficients for ultrasonic signals. Journal of Applied Physics . 2010
  • 6Demirli Ramazan.Model based estimation of ultrasonic echoes:analysis,algorithms,and applications. . 2001

共引文献4

同被引文献31

  • 1刘继忠,周晓军,蒋志峰.数据融合技术在棒材缺陷超声识别中的应用[J].农业机械学报,2006,37(1):160-162. 被引量:2
  • 2柯常波,陈铁群.粗晶材料超声无损检测信号处理技术发展趋势[J].物理测试,2006,24(5):37-41. 被引量:6
  • 3史亦伟,梁菁. 超声检测材料中微小缺陷的当量关系研究[C]. 中国机械工程学会无损检测分会第七届年会, 汕头,1999:243-246.
  • 4DEMIRLI R.Model based estimation of ultrasonic echoes; analysis, algorithms, and applications [D]. Chicago:Illinois Institute of Technology, 2001.
  • 5ROSE J L.Ultrasonic Waves in Solid Media [M]. Cambridge:Cambridge University Press, 1999.
  • 6PRAVEEN A, VIJAYAREKHA K, ABRAHAM S T. Signal quality enhancement using higher order wavelets for ultrasonic TOFD signals from austenitic stainless steel welds [J]. Ultrasonics, 2013, 53(7):1288-1292.
  • 7WEI Y Q, TANG R, HOU L, et al.. Study on noise reduction using a wavelet packet for ultrasonic flaw detection signal of a small diameter steel pipe with a thick wall [J]. International Journal of Acoustics and Vibration, 2014, 19(3):198-202.
  • 8LI M H. A rapid approach to speckle noise reduction in ultrasonic non-destructive evaluation using matched filters [C]. 2014 IEEE International Ultrasonics Symposium Proceedings, Chicago, USA, 2014, 45-48.
  • 9DONOHUE D K. Maximum likelihood estimation of A-Scan amplitudes for coherent targets in media of unresolvable scatterers [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39(3):422-431.
  • 10SANIIE J, WANG T. Statistical evaluation of backscattered ultrasonic grain signals [J].Journal of The Acoustical Society of America, 1988, 84(1):400-408.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部