摘要
在高中数学第一册中,有下面的一个三角恒等式: 在非直角三角形ABC中: tgA+tgB+tgC=tA·tgB·tgC (1)这是一个很有意思的恒等式,因为它是涉及到三实数之和等于这三实数之积的问题,因此它不论在几何或在代数中,公式(1)都有很广泛的应用。公式(1)的推广是: 如果α,β,γ满足α+β+γ=Kπ(K∈J),则 tgα+tgβ+tgγ=tgα·tgβ·tgγ (2) (2)的逆定理是: 如果tgα+tgβ+tgγ=tgα·tgβ·tgγ,则α+β+γ=Kπ (K∈J) (3) 这三个恒等式的证明是大家所熟悉的,这里就不再赘述了。
出处
《数学教学通讯》
1982年第4期30-33,共4页
Correspondence of the Teaching of Mathematics