摘要
全日制十年制学校初中课本《数学》第五册第184页第18题是求证:在园内接四边形ABCD中,AB·CD+BC·AD=AC·BD(提示:设法在BD上取P点使AB·CD=AC·BP)。证明:从A引直线AP交BD于P, 使∠BAP=∠CAD又有∠ABP=∠ACD, ∴△ABP∽△ACP, 图1 ∵BP:DC=AB:AC, ∴AB·DC=AC·BP。……①又∵∠BAP=∠CAD, ∴∠BAC=∠PAD, 又∠ACB=∠ADP。∴△ABC∽△APD, 则 BC:PD=AC:AD, ∴AD·BC=AC·PD……②①+②得AB·CD+BC·AD =AC(BP+PD)=AC·BD。数学老师告诉我们,这是平面几何中一个相当重要的定理,叫做Ptolemy定理:“园内接四边形中。
出处
《数学教学通讯》
1982年第6期44-46,共3页
Correspondence of the Teaching of Mathematics