摘要
“数学教学通讯”1982年第二期发表的“一些特殊数列求和的简易方法”一文,其中的例4是: “求数列1872,5382,11592,……前15个项之和.”该文作者经过了繁什的分析后得到: 1872=8×13×18, 5382=13×18×23 11592=18×23×28, 按照这个规律,其通项应该是: a_n=[8+(n—1)×5](8+n×5)[8+(n+1)×5] 根据这个通项,按照作者所介绍的公式是容易求出它的前15个项的和的, 然而,仅知数列开头的有限项,一般数列的通项并不是唯一的.事实上根据原题开头的三项,我们也可以给出另外一个通项:
出处
《数学教学通讯》
1983年第5期23-23,共1页
Correspondence of the Teaching of Mathematics