摘要
形如f(1)+f(2)+…+f(n)=F(n)的恒等式,除用数学归纳法证明外,还可用这样的方法,即证F(n)-F(n-1)=f(n),F(0)=0。于是f(1)=F(1),f(2)=F(2)-F(1),f(3)=F(3)-F(2),…,f(n)=F(n)-F(n-1),逐项相加得f(1)+f(2)+…+f(n)-F(n)。完全类似地,对形如f(1)·f(2)…f(n)=F(n)(f(n)≠0)的恒等式,可证F(n)/F(n-1)=f(n),F(0)=1。于是,f(1)=F(1),f(2)=F(2)/F(1),…f(n)=F(n)/F(n-1),逐项相乘得f(1)·f(2)…f(n)=F(n)。此法适用于代数,三角恒等式,证法简捷。例1 求证cosx+cos2x+……
出处
《数学教学通讯》
1985年第1期29-30,共2页
Correspondence of the Teaching of Mathematics