期刊文献+

利用几何图形证明三角不等式

下载PDF
导出
摘要 利用几何图形证明三角不等式就是化三角函数为几何图形。利用图形中的不等量关系来证明三角不等式。这样能避免复杂的三角运算,有较强的直观性,并能使一些三角不等式的证明化难为易。现举例说明如下。一、根据三角函数的定义,把三角函数化为线段比。例1 在锐角三角形ABC中,求证: ① cosA+cosB+cosC<sinA+sinB+sinC ② tgA·tgB·tgC>1 利用同圆中所对的圆周角大的弦也大(当圆周角是锐角时)。证明:①图1中,AE、BF、CD分别是三角形ABC三边上的高线 A、B、E、F四点共圆。
作者 张立国
机构地区 山东省聊城二中
出处 《数学教学通讯》 1986年第4期20-21,共2页 Correspondence of the Teaching of Mathematics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部