期刊文献+

一个具有非局部效应的非线性周期反应扩散方程的渐近形态 被引量:1

Asymptotic Patterns for a Nonlinear Periodic Reaction-Diffusion Equation with Nonlocal Effect
原文传递
导出
摘要 研究一个具有非线性-非局部反应的周期反应扩散系统.利用周期半流的渐近理论来讨论渐近波速c~*和周期行波解的存在性,证明参数c~*也是周期行波解的最小波速,并清晰描述解传播的阈值性质.最后给出渐近波速和最小波速c~*的估计. A periodic reaction-diffusion system with nonlinear-nonlocal functional response is considered in this paper.We use the asymptotic theory for periodic semiflow to discuss the existence of spreading speed c* and periodic traveling wave solutions.The threshold property for the spreading spread of solutions is described clearly according to the threshold parameter c* which is exactly the minimal wave speed as well.Finally,we give an estimate of the spreading speed and minimal wave speed c*.
出处 《数学学报(中文版)》 CSCD 北大核心 2014年第5期1011-1030,共20页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(11171120) 教育部高等学校博士学科点专项科研基金(20094407110001) 广东省自然科学基金项目(10151063101000003)
关键词 渐近波速 周期行波解 非局部效应 spreading speed periodic traveling wave solution nonlocal effect
  • 相关文献

参考文献11

  • 1翁佩萱,徐志庭.某些发展方程的渐近波速和行波解研究简介[J].数学进展,2010,39(1):1-22. 被引量:3
  • 2Xing Liang,Xiaotao Lin,Hiroshi Matano.A variational problem associated with the minimal speed of travelling waves for spatially periodic reaction-diffusion equations[J].Transactions of the American Mathematical Society.2010(11)
  • 3Haiyan Wang.On the existence of traveling waves for delayed reaction–diffusion equations[J].Journal of Differential Equations.2009(3)
  • 4Peixuan Weng,Zhiting Xu.Wavefronts for a global reaction–diffusion population model with infinite distributed delay[J].Journal of Mathematical Analysis and Applications.2008(1)
  • 5Shiwang Ma.Traveling waves for non-local delayed diffusion equations via auxiliary equations[J].Journal of Differential Equations.2007(2)
  • 6Xiao-Qiang Zhao,Dongmei Xiao.The Asymptotic Speed of Spread and Traveling Waves for a Vector Disease Model[J].Journal of Dynamics and Differential Equations.2006(4)
  • 7Xing Liang,Yingfei Yi,Xiao-Qiang Zhao.Spreading speeds and traveling waves for periodic evolution systems[J].Journal of Differential Equations.2006(1)
  • 8Zhi-Cheng Wang,Wan-Tong Li,Shigui Ruan.Travelling wave fronts in reaction–diffusion systems with spatio-temporal delays[J].Journal of Differential Equations.2005(1)
  • 9Dashun Xu,Xiao-Qiang Zhao.Dynamics in a periodic competitive model with stage structure[J].Journal of Mathematical Analysis and Applications.2005(2)
  • 10Horst R. Thieme,Xiao-Qiang Zhao.Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction–diffusion models[J].Journal of Differential Equations.2003(2)

二级参考文献83

  • 1Wu J.H., Theory and Applications of Partial Functional Differential equations, Springer-Verlag, New York, 1996.
  • 2Wu J.H., Zou X.F., Traveling wave fronts of reaction-diffusion systems with delays, J. Dyn. Diff. Eqs., 2001, 13: 651-687.
  • 3Wu J.H., Zou X.F., Traveling wave fronts of reaction-diffusion systems with delays, Erratum: J. Dyn. Diff. Eqs., 2008, 20: 531-533.
  • 4Wu S.L., Liu S.Y., Asymptotic speed of spread and traveling fronts for a nonlocal reaction-diffusion model with distibuted delay, Appl. Math. Modelling, 2009, 33: 2757-2765.
  • 5Xu D.S., Zhao X.-Q., Asymptotic speed of spread and traveling waves a nonlinear epidemic model, Discrete Contin. Dyn. Syst. Set. B., 2005, 5: 1043-1056.
  • 6Zhang K.F., Zhao X.-Q., Asymptotic behavior of a reaction-diffusion model with a quiescent stage, Proc. R. Soc. Edinburgh. Set. A, 2007, 463: 1029-1043.
  • 7Zhang K.F., Zhao X.-Q., Spreading speed and travelling waves for a spatially discrete SIS epidemic model, Nonlinearity, 2008, 21: 97-112.
  • 8Zhao X.-Q., Dynamic Systems in Population Biology, Springer-Verlag, New York, 2003.
  • 9Zhao X.-Q., Spatial dynamics of some evolution systems in biology, Recent Progress on .Reaction-Diffusion Systems and Viscosity Solutions, World Scientific Publishing Co. Pte. Ltd. Singapore. 2009, 332-363.
  • 10Zhao X.-Q., Xiao D.M., The asymptotic speed of spread and'traveling waves for a vector disease model, J. Dyn. Diff. Eqs., 2006, 18: 1001-1019.

共引文献2

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部