期刊文献+

S^(n+p)中Mbius第二基本形式平行的子流形的刚性定理

On Rigidity Theorem of Submanifolds with Parallel Mbius Second Fundamental Form in S^(n+p)
原文传递
导出
摘要 研究S^(n+p)中不含脐点且Mbius第二基本形式平行的子流形,得到了它的Blaschke张量A的模长平方有下界,且对其达到下界的情形进行了分类. We study umbilic free submanifolds with parallel Mbius second fundamental form.We find the squared norm of the Blashke tensor A has a lower bound for these submanifolds,and we get a classification result when it reaches the lower bound.
作者 李方方
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2014年第6期1081-1088,共8页 Acta Mathematica Sinica:Chinese Series
关键词 子流形 Mobius第二基本形式 平行 submanifolds Mbius second fundamental form parallel
  • 相关文献

参考文献5

二级参考文献10

  • 1HU Zejun,LI Haizhong Department of Mathematics, Zhengzhou University Zhengzhou 450052, China Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.Classification of hypersurfaces with parallel Mobius second fundamental form in S^(n+1)[J].Science China Mathematics,2004,47(3):417-430. 被引量:34
  • 2Wang C. P., Moebius geometry of submanifolds in S^n, Manuscripta Math., 1998, 96: 517-534.
  • 3Liu H. L., Wang C. P.,Zhao G. S., Moebius isotropic submanifolds in S^n, Tohoku Math.J.,2001,to appear.
  • 4Chen B. Y., Total mean curvature and submanifolds of finite type, World Scientific Publish'ing, Go Pte Ltd.,1984.
  • 5Bryant R. L., Minimal surfaces of constant curvatures in S^n, Trans. Amer. Math. Soc., 1985, 290(1):259-271.
  • 6Li A. M., Li J. M., An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 1992,58: 582-594.
  • 7Chern S. S., Do Carmo M., Kobayashi S., Minimal submanifolds of a sphere with second fundamental form of constant length, Berlin, New York: Shing-shen Chern Selected Papers, 1978, 393-409.
  • 8赵国松.仿射空间中具有平行Ricci曲率的卵形面[J].四川大学学报(自然科学版),1998,35(2):174-177. 被引量:2
  • 9Hai Zhong LI Department of Mathematics, Tsinghua University. Beijing 100084. P. R. China Hui Li LIU Department of Mathematics, Northeastern University. Shenyang 110000. P. R. China Chang Ping WANG Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences. Peking University, Beijing 100871, P. R. China Guo Song ZHAO Department of Mathematics, Sichuan University, Chengdu 610064. P. R. China.Mobius Isoparametric Hypersurfaces in S^(n+1) with Two Distinct Principal Curvatures[J].Acta Mathematica Sinica,English Series,2002,18(3):437-446. 被引量:55
  • 10HaiZhongLI,ChangPingWANG.Surfaces with Vanishing Moebius Form in S^n[J].Acta Mathematica Sinica,English Series,2003,19(4):671-678. 被引量:26

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部