期刊文献+

第二类Stirling数的一些同余式 被引量:2

Some Congruences for Stirling Numbers of the Second Kind
原文传递
导出
摘要 设k,n为非负整数,S(n,k)表示第二类Stirling数.本文研究了S(n,k)模2的方幂的同余式,首先给出了一类二项式系数模2的同余式,然后利用上述结果得到了S(n,a2~m+b)模2~m的同余式.其表达式均由简单二项式系数组成,其中m≥3,b=0,1,2.这些结果改进了Chan和Manna的结果. Let A;and n be nonnegative integers.In this paper,we investigate the congruences for the Stirling numbers of the second kind S(n,k) modulo powers of 2.We first give a congruence for some certain binomial coefficients modulo 2.Using this result we then establish the congruences for S(n,a2~m + b) modulo 2~m,and express them in terms of binomial coefficients,where m ≥ 3,b = 0,1,2.These strengthen the results obtained by Chan and Manna.
作者 赵建容
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2014年第6期1161-1170,共10页 Acta Mathematica Sinica:Chinese Series
基金 四川省教育厅科研项目(14ZB0450)
关键词 同余式 第二类STIRLING数 二项式系数 congruence Stirling numbers of the second kind binomial coefficient
  • 相关文献

参考文献5

  • 1HONGSHAOFANG.NOTES ON GLAISHER'S CONGRUENCES[J].Chinese Annals of Mathematics,Series B,2000,21(1):33-38. 被引量:3
  • 2Arnold Adelberg,Shaofang Hong,Wenli Ren.Bounds of divided universal Bernoulli numbers and universal Kummer congruences[J].Proceedings of the American Mathematical Society.2007(1)
  • 3Donald M Davis,Katarzyna Potocka.2-primary v <sub>1</sub>-periodic homotopy groups of SU(n) revisited[J].Forum Mathematicum.2007(5)
  • 4F. Clarke.Hensel′s Lemma and the Divisibility by Primes of Stirling-like Numbers[J].Journal of Number Theory.1995(1)
  • 5Donald M. Davis.Divisibility by $2$ of Stirling-like numbers[J].Proceedings of the American Mathematical Society.1990(3)

二级参考文献9

  • 1[1]Boyd, D., A p-adic study of the partial sums of the harmonic series, Experiment Math.[2](1994),[2]87-302.
  • 2[2]Dickson, L. E., History of the Theory of Numbers, Vol. I, Chelsea, New York, 1952 (especially Chapter[2]).
  • 3[3]Glaisher, J. W. L., On the residues of the sums of products of the first p-1 numbers,and their powers,to modulus p2 or pa, Quart. J. Pure Appl. Math.,[2]1(1900),321-353.
  • 4[4]Glaisher, J. W. L., On the residues of the inverse powers of numbers in arithmetic progression, Quart.J. Pure Appl. Math.,[2]2(1901),[2]71-305.
  • 5[5]Hardy, G. H. & Wright, E. M., An Introduction to the Theory of Numbers,[4]th ed. Oxford Univ. Press,London, 1960.
  • 6[6]Ireland, K. & Rosen, M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982.
  • 7[7]Lehmer, E., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann.Math.,[2]9(1938),[2]50-360.
  • 8[8]Washington, L., p-adic L-functions and sums of powers, J. Number Theory,[6]9(1998),[5]0-61.
  • 9[9]Washington, L., Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982.

共引文献2

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部