期刊文献+

S^4中具有调和共形高斯映照的超曲面

Hypersurfaces with Harmonic Conformal Gauss Map in S^4
原文传递
导出
摘要 设x:M^n→S^(n+1)是球面S^(n+1)中的一个定向超曲面,其共形高斯映照G=(H,Hx+en+.1):M^n→R_1S^(n+3)是M(o|¨)bius变换群下的一个不变量,其中H,e(n+1)+1分别是超曲面x的平均曲率和单位法向量场.本文研究了S^4中具有调和共形高斯映照的超曲面,分类了具有调和共形高斯映照和常M(o|¨)bius数量曲率的超曲面,给出了具有调和共形高斯映照但不是Willmore超曲面的例子. Let x:M^n → S^(n+1) be an oriented hypersurface in S^(n+1),the conformal Gauss map G =(H,H_x.+ e_(n+1)):M^n→ R_1^(n+3) is invariant under Mobius transformations of S^(n+1),where H,e_(n+1) are the mean curvature,the global unit normal vector field of x,respectively.In this paper,we study the oriented hypersurface x:M^3 → S^4with harmonic conformal Gauss map,and we classify the hypersurfaces in S^4 with constant Mobius scalar curvature under Mobius transformation group,which gives some examples of hypersurfaces with harmonic conformal Gauss map,but not Willmore hypersurfaces.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2014年第6期1231-1240,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然青年基金资助项目(10801006 1097055)
关键词 Mobius变换群 共形高斯映照 Willmore超曲面 Mbius transformation group conformal Gauss map Willmore hypersurfaces
  • 相关文献

参考文献4

二级参考文献6

  • 1HU Zejun,LI Haizhong Department of Mathematics, Zhengzhou University Zhengzhou 450052, China Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.Classification of hypersurfaces with parallel Mobius second fundamental form in S^(n+1)[J].Science China Mathematics,2004,47(3):417-430. 被引量:34
  • 2Hans Friedrich Münzner.Isoparametrische Hyperfl?chen in Sph?ren[J].Mathematische Annalen.1981(2)
  • 3Hans Friedrich Münzner.Isoparametrische Hyperfl?chen in Sph?ren[J].Mathematische Annalen.1980(1)
  • 4Thomas E. Cecil,Patrick J. Ryan.Focal sets, taut embeddings and the cyclides of Dupin[J].Mathematische Annalen.1978(2)
  • 5Hai Zhong LI Department of Mathematics, Tsinghua University. Beijing 100084. P. R. China Hui Li LIU Department of Mathematics, Northeastern University. Shenyang 110000. P. R. China Chang Ping WANG Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences. Peking University, Beijing 100871, P. R. China Guo Song ZHAO Department of Mathematics, Sichuan University, Chengdu 610064. P. R. China.Mobius Isoparametric Hypersurfaces in S^(n+1) with Two Distinct Principal Curvatures[J].Acta Mathematica Sinica,English Series,2002,18(3):437-446. 被引量:55
  • 6HaiZhongLI,ChangPingWANG.Surfaces with Vanishing Moebius Form in S^n[J].Acta Mathematica Sinica,English Series,2003,19(4):671-678. 被引量:26

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部