期刊文献+

二维黎曼问题一些新解

下载PDF
导出
摘要 研究沿y方向非凸的标量守恒律的二维黎曼问题,初值是四片常数.应用广义特征分析方法,研究基本波及其相互作用,获得一些新的黎曼解的显式结构.
作者 余俊
出处 《数学学习与研究》 2008年第11期74-76,共3页
  • 相关文献

参考文献11

  • 1余俊,杨汉春.二维标量守恒律一些新的黎曼解[J].云南大学学报(自然科学版),2005,27(1):9-13. 被引量:2
  • 2John Guckenheimer.Shocks and rarefactions in two space dimensions[J].Archive for Rational Mechanics and Analysis.1975(3)
  • 3Lindquist,W B.The scalar Riemann problem in two spatial dimensions: Piecewise smoothness of solutions[].SIAM Journal on Mathematical Analysis.1986
  • 4Wagner D H.The Riemann problem in two space dimensions for a single conservation laws[].SIAM Journal on Mathematical Analysis.1983
  • 5Zhang T,Zheng Y X.Two-dimensional Riemann problem for a single conservation law[].Transactions of the American Mathematical Society.1989
  • 6Chen,G Q,Li,D,Tan,D.Structure of Riemann solutions for 2-dimensional scalar conservation laws[].Journal of Differential Equations.1996
  • 7Chang,T,Hsiao,L,Brezis,H,Douglas R,G,Jeffrey,A.Riemann Problem and Interaction of Waves in Gas Dynamics[].aPitman Monoger Surveys Pure Appl Math Vol.1989
  • 8Guckenheimer,J.Shocks and rarefactions in two space dimensions[].Archive for Rational Mechanics and Analysis.1975
  • 9Zhang,P,Zhang,T.Generalized characteristic analysis and Guckenheimer structure[].Journal of Differential Equations.1999
  • 10Sheng,W C.Two-dimensional Riemann problems for conservation laws[].Journal of Differential Equations.2002

二级参考文献17

  • 1余俊,杨汉春.一类n-维单个守恒律的黎曼问题(英文)[J].云南大学学报(自然科学版),2003,25(4):296-298. 被引量:1
  • 2LINDQUIST W B. The scalar Riemann problem in two spatia dimensions: Piecewise smoothness of solutions [ J ]. SIAM J Math Anal, 1986, 17:1 178-1 197.
  • 3WAGNER D. The Riemann problem in two space dimensions for a single conservation laws[J]. SIAM J Math Anal, 1983,17: 534-559.
  • 4CHANG T, HSIAO L. Riemann problem and interaction of waves in gas dynamics[A]. BREZIS H, DOUGLAS R G, JEFFREY A, et al. Pitman monoger, Surveys in Pure and Applied Mathematics[C]. Essexi: Longrnan, 1989. 174-222.
  • 5GUCKENHEIMER J. Shocks and rarefactions in two space dimensions[J]. Arch Rational Mech Anal, 1975, 59:281-291.
  • 6ZHANG P, ZHANG T. Generalized characteristi, analysis and Guckenheimer structure [ J ]. J Differential Equations, 1999,152: 409-430.
  • 7SHENG W. Two-dimensional Riemann probler, for scalar conservation laws[J ]. J Differential Equations, 2002, 183: 239-261.
  • 8LINDQUIST W B. The scalar Riemann problem in two spatia dimensions: Piecewise smoothness of solutions[ J ]. SIAM J Math Anal, 1986, 17:1 178-1 197.?A
  • 9WAGNER D. The Riemann problem in two space dimensions for a single conservation laws[J]. SIAM J Math Anal, 1983,17: 534-559.?A
  • 10ZHANG T, ZHENG Y. Two-dimensional Riemann problem for a single conservation law[J]. Trans Amer Math Soc, 1989,312: 589-619.?A

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部