二维黎曼问题一些新解
摘要
研究沿y方向非凸的标量守恒律的二维黎曼问题,初值是四片常数.应用广义特征分析方法,研究基本波及其相互作用,获得一些新的黎曼解的显式结构.
参考文献11
-
1余俊,杨汉春.二维标量守恒律一些新的黎曼解[J].云南大学学报(自然科学版),2005,27(1):9-13. 被引量:2
-
2John Guckenheimer.Shocks and rarefactions in two space dimensions[J].Archive for Rational Mechanics and Analysis.1975(3)
-
3Lindquist,W B.The scalar Riemann problem in two spatial dimensions: Piecewise smoothness of solutions[].SIAM Journal on Mathematical Analysis.1986
-
4Wagner D H.The Riemann problem in two space dimensions for a single conservation laws[].SIAM Journal on Mathematical Analysis.1983
-
5Zhang T,Zheng Y X.Two-dimensional Riemann problem for a single conservation law[].Transactions of the American Mathematical Society.1989
-
6Chen,G Q,Li,D,Tan,D.Structure of Riemann solutions for 2-dimensional scalar conservation laws[].Journal of Differential Equations.1996
-
7Chang,T,Hsiao,L,Brezis,H,Douglas R,G,Jeffrey,A.Riemann Problem and Interaction of Waves in Gas Dynamics[].aPitman Monoger Surveys Pure Appl Math Vol.1989
-
8Guckenheimer,J.Shocks and rarefactions in two space dimensions[].Archive for Rational Mechanics and Analysis.1975
-
9Zhang,P,Zhang,T.Generalized characteristic analysis and Guckenheimer structure[].Journal of Differential Equations.1999
-
10Sheng,W C.Two-dimensional Riemann problems for conservation laws[].Journal of Differential Equations.2002
二级参考文献17
-
1余俊,杨汉春.一类n-维单个守恒律的黎曼问题(英文)[J].云南大学学报(自然科学版),2003,25(4):296-298. 被引量:1
-
2LINDQUIST W B. The scalar Riemann problem in two spatia dimensions: Piecewise smoothness of solutions [ J ]. SIAM J Math Anal, 1986, 17:1 178-1 197.
-
3WAGNER D. The Riemann problem in two space dimensions for a single conservation laws[J]. SIAM J Math Anal, 1983,17: 534-559.
-
4CHANG T, HSIAO L. Riemann problem and interaction of waves in gas dynamics[A]. BREZIS H, DOUGLAS R G, JEFFREY A, et al. Pitman monoger, Surveys in Pure and Applied Mathematics[C]. Essexi: Longrnan, 1989. 174-222.
-
5GUCKENHEIMER J. Shocks and rarefactions in two space dimensions[J]. Arch Rational Mech Anal, 1975, 59:281-291.
-
6ZHANG P, ZHANG T. Generalized characteristi, analysis and Guckenheimer structure [ J ]. J Differential Equations, 1999,152: 409-430.
-
7SHENG W. Two-dimensional Riemann probler, for scalar conservation laws[J ]. J Differential Equations, 2002, 183: 239-261.
-
8LINDQUIST W B. The scalar Riemann problem in two spatia dimensions: Piecewise smoothness of solutions[ J ]. SIAM J Math Anal, 1986, 17:1 178-1 197.?A
-
9WAGNER D. The Riemann problem in two space dimensions for a single conservation laws[J]. SIAM J Math Anal, 1983,17: 534-559.?A
-
10ZHANG T, ZHENG Y. Two-dimensional Riemann problem for a single conservation law[J]. Trans Amer Math Soc, 1989,312: 589-619.?A
-
1张朋,张同.Riemann问题和三个激波的相互作用[J].纯粹数学与应用数学,1997,13(Z10):41-51.
-
2孙世良,张宝玉.一类变分方程解的显式结构(Ⅰ)[J].太原工业大学学报,1996,27(4):21-26. 被引量:2
-
3张泓知,盛万成.一类二维单个守恒律方程的Riemann问题[J].应用数学与计算数学学报,2010,24(2):1-12. 被引量:1
-
4孙世良.一类平稳型对称变分方程解的显式结构[J].南京大学学报(数学半年刊),2004,21(1):162-169. 被引量:2
-
5孙世良.一类对称变分方程解的显式结构[J].徐州师范大学学报(自然科学版),2002,20(3):12-14.
-
6孙世良.一类变分方程解的显式结构及应用[J].工程数学学报,1999,16(2):123-126. 被引量:1
-
7孙世良,张宝玉.一类变分方程解的显式结构(Ⅱ)[J].太原工业大学学报,1997,28(2):96-102. 被引量:1
-
8刘颖,高凌天.各向异性液饱和多孔材料慢波波阵面上的能量聚焦[J].北京交通大学学报,2006,30(4):1-5.
-
9黄大荣,杨永琴.一类新的线性二次随机最优控制器的设计[J].纯粹数学与应用数学,2008,24(2):228-233.
-
10HEQUN,SHENYIBING.EXPLICIT CONSTRUCTION FOR HARMONIC SURFACES IN U(N) VIA ADDING UNITONS[J].Chinese Annals of Mathematics,Series B,2004,25(1):119-128. 被引量:3