期刊文献+

果蝇优化算法(FOA)步长改进及其多元函数最优化方法 被引量:13

下载PDF
导出
摘要 果蝇优化算法(FOA)模拟果蝇群体利用嗅觉和视觉寻找食物的方法来寻找最优值.本文根据算法的特点分析了影响收敛速度的因素,通过变步长方式得到改进的FOA.另外还提出了多元函数最优问题的FOA方法.在对Schaffer函数的全局最优过程中,经过变步长的FOA收敛速度大大提高(与理论最优值的误差以指数速度下降),在计算速度和收敛精度方面都远远优于遗传算法.
作者 马超 董玲
出处 《数学学习与研究》 2013年第13期90-92,共3页
  • 相关文献

参考文献6

  • 1潘文超.应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J].太原理工大学学报(社会科学版),2011,29(4):1-5. 被引量:135
  • 2张琳,郑忠,高小强.多峰函数优化的混合遗传算法[J].重庆大学学报(自然科学版),2005,28(7):51-54. 被引量:10
  • 3Wen-Tsao.A new fruit fly optimization algorithm:Taking the financial distress model as an example[].Knowledge Based Systems.2011
  • 4Pan,W T.A new evolutionary computation approach:Fruit Fly Optimization Algorithm[].Conferenceof Digital Technology and innovation Management.2011
  • 5Pan,W T.A new fruit fly optimization algorithm:Tak-ing the financial distress model as an example[].Knowledge Based Systems.2011
  • 6Eberhart,R.C,Kennedy,J.new optimizerusing particle swarm theory[]..

二级参考文献23

  • 1Hart,P E,Nilsson,N J and Raphael,B. A formal basis for the heuristic determination of minimum cost paths [J]. IEEE Transactions on Systems Science and Cy- bernetics SSC4,1968(2) : 100-107.
  • 2Friedman, M. A mathematical programming model for optimal scheduling for buses depature under determin- istic condition [J]. Transportation Research, 1976, 10 (2) :83-90.
  • 3Gupta,Y P,Gupta,M C,Kumar,A and Sundram,C. A genetic algorithm-based approach to cell composition and layout design problems[J]. Int. Journal of Produc- tion Research, 1996,34 (2) : 447-482.
  • 4Yan,S Y,Lee W T and Shih,Y L. A path-based analo- gous particle swarm optimization algorithm for mini- mum cost network flow problems with concave arc costs[J]. Transportation Planning Journal, 2007, 36 (3) ..393-424.
  • 5Pan,W T. A new evolutionary computation approach: Fruit Fly Optimization Algorithm[C]. 2011 Conference of Digital Technology and innovation Management Tai- pei,2011.
  • 6Pan,W T. A new fruit fly optimization algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, In Press, 2011.
  • 7Tong, L L and Shih, B C. Predict the financial crisis by using grey relation analysis, neural network, and case- based reasoning[J]. Chinese. Manage Rev, 2011,4 (2) : 25-37.
  • 8Deng,J. The control problems of grey system[J]. System & Control Letters, 1982 (5): 288-294.
  • 9Wen, K L, Chang Chien S K. , Yeah C K, Wang, C W and Lin H S. Apply matlab in grey system theory[M]. Chuan Hwa Book Co. Ltd,Taiwan,2006.
  • 10Specht,D. F. Probabilistic neural networks and the poly- nomial adaline as complementary techniques for classifica- tion[J]. IEEE Trans. on Neural Networks, 1990,1 ( 1 ) : 111-121.

共引文献143

同被引文献89

引证文献13

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部