期刊文献+

不定积分计算中一类有用的变量代换 被引量:1

下载PDF
导出
摘要 一、引言形如∫R(x,ax2+bx+槡c)dx的不定积分化为有理式积分的变量代换通常有三角(双曲)代换和欧拉代换(Euler).三角代换可把无理式化为三角有理式,欧拉代换则将无理式化为代数有理式.由于三角有理式的不定积分并非总能表示为有限形式(俗称积出来),往往还要通过变量代换(如万能代换)化为代数有理式才能积出来.因此,欧拉代换就显得相当重要;但是,借助欧拉代换所得到的代数有理式的积分,往往比较复杂,有时也不易积出来。
出处 《数学学习与研究》 2013年第17期110-111,共2页
基金 防灾科技学院教学建设与教学研究项目(编号)
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部