初始状态变化的非线性奇异系统的实用稳定性
摘要
本文利用类李雅普诺夫函数方法和比较原理,研究了初始状态变化的非线性奇异系统的实用稳定性、一致实用稳定性及实用渐近稳定性.通过借助类李雅普诺夫函数,同时给出相应的比较系统,得到了这一类系统实用稳定、一致实用稳定及实用渐近稳定的充分条件.
参考文献4
-
1Xinyu Song,Senlin Li,An Li.Practical stability of nonlinear differential equation with initial time difference[J].Applied Mathematics and Computation.2008(1)
-
2Mohsen Dlala,Mohamed Ali Hammami.Uniform Exponential Practical Stability of Impulsive Perturbed Systems[J].Journal of Dynamical and Control Systems.2007(3)
-
3Senlin Li,Xinyu Song,An Li.Strict practical stability of nonlinear impulsive systems by employing two Lyapunov-like functions[J].Nonlinear Analysis: Real World Applications.2007(5)
-
4Yu Zhang,Jitao Sun.Eventual practical stability of impulsive differential equations with time delay in terms of two measurements[J].Journal of Computational and Applied Mathematics.2004(1)
-
1卢占会,李庚银,周明,杨玉华.电力市场实用稳定性的判定条件[J].数学的实践与认识,2009,39(4):54-61. 被引量:2
-
2杨军,张晓华.时标上脉冲混合动态系统实用渐近稳定性(英文)[J].生物数学学报,2011,26(4):657-665.
-
3李少娥,冯伟贞.时变脉冲切换系统的实用稳定性研究[J].仲恺农业工程学院学报,2014,27(2):36-44. 被引量:1
-
4鲍俊艳,高春霞,周彩丽.脉冲微分方程的两度量实用稳定性[J].数学的实践与认识,2008,38(9):166-171. 被引量:2
-
5李少娥,冯伟贞.时滞脉冲切换系统的实用稳定性-带Razumikhin条件的Lyapunov函数方法[J].高校应用数学学报(A辑),2016,31(3):327-337.