摘要
将命题lim n→∞(a<sub>1</sub><sup>n</sup>+a<sub>2</sub><sup>n</sup>+…+a<sub>m</sub><sup>n</sup>)<sup>1/n</sup>=max{a<sub>1</sub>,a<sub>2</sub>,…,a<sub>m</sub>}推广到函数极限上可得:lim x→+∞(f<sub>1</sub><sup>x</sup>(x)+f<sub>2</sub><sup>x</sup>(x)+…+f<sub>m</sub><sup>x</sup>(x))<sup>1/x</sup>=max{lim x→+∞f<sub>1</sub>(x),lim x→+∞f<sub>2</sub>(x),…,lim x→+∞f<sub>m</sub>(x)}和lim x→<sup>x</sup>0(f<sub>1</sub><sup>φ(x)</sup>(x)+f<sub>2</sub><sup>φ(x)</sup>(x)+…+f<sub>m</sub><sup>φ(x)</sup>(x))<sup>1/φ(x)</sup>=max{lim x→<sup>x</sup>0f<sub>1</sub>(x),lim x→<sup>x</sup>0f<sub>2</sub>(x),…,lim x→<sup>x</sup>0f<sub>m</sub>(x)}等.