期刊文献+

A NON-PARAMETER BAYESIAN CLASSIFIER FOR FACE RECOGNITION 被引量:9

A NON-PARAMETER BAYESIAN CLASSIFIER FOR FACE RECOGNITION
下载PDF
导出
摘要 A non-parameter Bayesian classifier based on Kernel Density Estimation (KDE)is presented for face recognition, which can be regarded as a weighted Nearest Neighbor (NN)classifier in formation. The class conditional density is estimated by KDE and the bandwidthof the kernel function is estimated by Expectation Maximum (EM) algorithm. Two subspaceanalysis methods-linear Principal Component Analysis (PCA) and Kernel-based PCA (KPCA)are respectively used to extract features, and the proposed method is compared with ProbabilisticReasoning Models (PRM), Nearest Center (NC) and NN classifiers which are widely used in facerecognition systems. The experiments are performed on two benchmarks and the experimentalresults show that the KDE outperforms PRM, NC and NN classifiers. A non-parameter Bayesian classifier based on Kernel Density Estimation (KDE) is presented for face recognition, which can be regarded as a weighted Nearest Neighbor (NN) classifier in formation. The class conditional density is estimated by KDE and the bandwidth of the kernel function is estimated by Expectation Maximum (EM) algorithm. Two subspace analysis methods-linear Principal Component Analysis (PCA) and Kernel-based PCA (KPCA) are respectively used to extract features, and the proposed method is compared with Probabilistic Reasoning Models (PRM), Nearest Center (NC) and NN classifiers which are widely used in face recognition systems. The experiments are performed on two benchmarks and the experimental results show that the KDE outperforms PRM, NC and NN classifiers.
出处 《Journal of Electronics(China)》 2003年第5期362-370,共9页 电子科学学刊(英文版)
基金 National "863" project (2001AA114140) the National Natural Science Foundation of China (60135020).
关键词 Kernel Density Estimation (KDE) Probabilistic Reasoning Models (PRM) Principal Component Analysis (PCA) Kernel-based PCA (KPCA) Face recognition 面部识别 非参数Bayesian分类器 Kernel密度估计 KDE 概率推理模型 主成分分析
  • 相关文献

同被引文献13

  • 1王晓燕,韩俊宁,楼顺天.基于盲信源分离技术的雷达信号分选研究[J].电子对抗,2005(5):6-10. 被引量:4
  • 2惠文华.基于支持向量机的遥感图像分类方法[J].地球科学与环境学报,2006,28(2):93-95. 被引量:46
  • 3王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版),2006,5(4):500-504. 被引量:40
  • 4Joshi J A,Fatih P,Nikolaos P.Multi-class Active Learning for Image Classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Miami,USA:[s.n.],2009:2372-2379.
  • 5Lazebnik S,Cordelia S,Jean P.Beyond Bags of Features:Spatial Pyramid Matching for Recognizing Natural Scene Categories[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Portland,USA:[s.n.],2006:2169-2178.
  • 6Fan Rongen,Chang Kaiwei,Hsieh C J,et al.LIBLINEAR:A Library for Large Linear Classification[J].Journal of Machine Learning Research,2008,9(6):1871-1874.
  • 7Zhang Debing,Hu Yao,Ye Jieping,et al.Matrix Completion by Truncated Nuclear Norm Regularization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Providence,USA:[s.n.],2012:2192-2199.
  • 8Michael G,Boyd S.CVX:Matlab Software for Disciplined Convex Programming(Version2.0)[EB/OL].(2012-09-27).http://cvxr.com/cvx.
  • 9Krizhevsky A,Hinton G.Learning Multiple Layers of Features from Tiny Images[D].Toronto,Canada:University of Toronto,2009.
  • 10Li Feifei,Fergus R,Perona P.Learning Generative Visual Models from Few Training Examples:An Incremental Bayesian Approach Tested on101Object Categories[J].Computer Vision and Image Understanding,2007,106(1):59-70.

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部