期刊文献+

空间划分双因子耦合PDE模型与算法 被引量:1

Coupled PDE model and algorithm based on two-factor for spatial partition
下载PDF
导出
摘要 为了计算格网划分的数目和间距,根据地形因子和数据密度提出了空间划分双因子耦合PDE模型算法.利用地形曲面偏微分方程与地形因子、样本数据密度的偏导函数关系,通过曲面方程作等价替代方程进行系统消参来减小系统误差,利用Laves划分标识[63]和循环递归算法建立坡度和数据密度耦合模型.模型能够解算出每个区域单元格间距和数目,解决了非凸集合产生非法边界及多边形的问题.通过可视化验证和对比分析表明,算法运行时间随样本数据成倍增长时呈线性增加,程序运行时间约为其他算法的1/6~1/4. In order to calculate the number and spacing of grid partition,the coupled PDE model and algorithm based on two-factor for spatial partition was proposed according to both terrain factor and data density.Through using the relationship between the partial differential equation and partial derivative function of both terrain factor and sample data density and taking the curved surface equation as the equivalentalternative equation,the parameter elimination of system was performed to reduce the system error.The coupled model based on both slope and data density was established with the Laves partition identity [63]as well as the loop and recursive algorithm.The number and spacing of cell in each region can be calculated with the model,and the problem of illegal border and polygon generated by the non-convex set is also solved.Through the visual verification and comparative analysis,it is indicated that the running time of the algorithm linearly increases with increasing exponentially the sample data,and the running time of program is about 1 /6 ~ 1 /4 of other algorithms.
出处 《沈阳工业大学学报》 EI CAS 北大核心 2014年第4期446-452,共7页 Journal of Shenyang University of Technology
基金 国家自然科学基金资助项目(41161072) 湖南省自然科学基金资助项目(14JJ7038)
关键词 地形因子 数据密度 格网 空间划分 偏微分方程 耦合模型 非凸集合 可视化 terrain factor data density grid spatial partitioning partial differential equation coupled model non-convex set visualization
  • 相关文献

参考文献7

二级参考文献65

共引文献136

同被引文献13

  • 1唐中实,黄俊峰,尹平,等,译.地理信息系统——原理与技术[M].北京:电子工业出版社,2004.
  • 2Ahuja N . On Approaches to Polygonal Decomposi- tion for Hierarchical Image Representation[J]. Com- puter Vision, Graphics, and Image Processing, 1983,24 (2) .. 200-214.
  • 3Samet H . The Design and Analysis Spatial Data Structures[M]. USA.. Addison-Wesley, 1989.
  • 4Grunbaum B, Shephard G C. The Eighty-one Types of Isohedrat Tilingsin the Plane[J]. Mathematical Proceedings of the Cambridge Philosophical Socie- ty, 1977, 82(2) ..177-196.
  • 5Bell S B M, Diaz B M, Horlroy F C. The HOR Quadtree: an Optimal Structure Based on a Non- sqare 4-shape[M]. //Brooks S R. Mathematics in Remote Sensing. London:Oxford Press, 1989.
  • 6Bell S B M, Horlroy F C. Tesseral Amalgamators and Hierarchical Tessellations[J]. Image and Vison Computing, 1991, 9:313-328.
  • 7Hutchinson M F, Gallant J C. Digital Elevation Models and Representation of Terrain Shape[M]. // Wilson J P, Gallant J C. Terrain Analysis.. Prinei Ples and APP lieations. New York.. John Wileyl~Sons. Ine200. 2000.
  • 8Tasi D, Victor J. Delaunay Triangulations in TIN Creation~ An Overview and a Linear-time Algorithm [J]. International Journal of GIS , 1993,7 (6) 501-524.
  • 9刘永和,王润怀,齐永安.一种非凸包边界约束不规则三角网生成算法[J].测绘科学,2008,33(3):79-81. 被引量:13
  • 10贾敦新,汤国安,王春,贾旖旎.DEM数据误差与地形描述误差对坡度精度的影响[J].地球信息科学,2009(1):43-49. 被引量:18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部