期刊文献+

基于K-近邻隶属度模糊支持向量机的再造抽油杆损伤等级磁记忆定量识别 被引量:7

Quantitative MMM identification of damage levels based on KNN FSVM for remanufactured sucker rod
下载PDF
导出
摘要 针对磁记忆技术在再造抽油杆损伤等级定量评价中小样本和分散性的难题,从再造抽油杆疲劳损伤实验出发,通过获取损伤演化过程的磁记忆特征规律,提取五维磁记忆特征向量,首次引入基于K-近邻隶属度的模糊支持向量机多分类算法,结合参数组合寻优方法,建立再造抽油杆损伤等级的多分类磁记忆定量识别模型。结果表明:利用K-近邻隶属度将分散性和模糊性加以量化,结合支持向量机的小样本优势,构造的K-近邻隶属度模糊支持向量机多分类磁记忆模型,可以进行再造抽油杆损伤等级的磁记忆定量识别,并进一步进行参数组合寻优,避免了盲目选择固定参数导致模型精度过低,具有较好的抗噪性和鲁棒性,为再造抽油杆损伤等级定量评价提供了一种新的方法。 Data dispersion and small-and medium-sized samples incur the difficulty in quantitative identification of damage levels for remanufactured sucker rods by applying metal magnetic memory(MMM)technology.To solve the bottleneck,based on the fatigue and damage experiment of remanufactured sucker rods,the MMM characteristic rule of damage evolution is obtained to further extract five dimensional MMM parameters.A new multi-classification algorithm of the fuzzy support vector machine based on the membership degree obtained using k-nearest neighbor method are first put forward in this study.On this basis,the multiple classification MMM model is established for quantitative identification of damage levels for remanufactured sucker rods using parameter combination optimization method.The result shows that this membership degree can be used to quantify the data dispersion and fuzziness,and then a multi-classification MMM model based on the fuzzy support vector machine with the membership degree can be established by utilizing the advantage in solving small sample.This model can perform quantitative identification of the damage level for remanufactured sucker rods;parameter combination optimization is further implemented to avoid the over-low precision caused by blind selection of fixed parameter.It also has better robustness and anti-noise property,providing a new method to quantitatively identify the damage level for remanufactured sucker rods.
出处 《石油学报》 EI CAS CSCD 北大核心 2015年第11期1427-1432 1456,1456,共7页 Acta Petrolei Sinica
基金 国家自然科学基金项目(No.11272084 No.11072056 No.11472076) 中国石油科技创新基金项目(2015D-5006-0602) 黑龙江省博士后科研启动基金项目(LBH-Q13035) 黑龙江省应用技术研究与开发计划项目(GA13A402)资助
关键词 金属磁记忆定量识别 K-近邻隶属度 模糊支持向量机 参数组合寻优 再造抽油杆 quantitative metal magnetic memory identification k-Nearest Neighbor membership fuzzy support vector machine parameter combination optimization remanufactured sucker rod
  • 相关文献

参考文献8

  • 1罗忠运.基于希尔伯特—黄变换和模糊支持向量机的输电线路故障分类方法研究[D].西南交通大学2014
  • 2许翠云.模糊支持向量机的研究及其在基因分类中的应用[D].南京林业大学2013
  • 3Arindam Chaudhuri.Modified fuzzy support vector machine for credit approval classification[J]. AI Communications . 2014 (2)
  • 4Anatoly Dubov,Alexandr Dubov,Sergey Kolokolnikov.Application of the metal magnetic memory method for detection of defects at the initial stage of their development for prevention of failures of power engineering welded steel structures and steam turbine parts[J]. Welding in the World . 2014 (2)
  • 5Zhenning Wu,Huaguang Zhang,Jinhai Liu.A fuzzy support vector machine algorithm for classification based on a novel PIM fuzzy clustering method[J]. Neurocomputing . 2013
  • 6Anatoly Dubov,Sergey Kolokolnikov.Assessment of the Material State of Oil and Gas Pipelines Based on the Metal Magnetic Memory Method[J]. Welding in the World . 2012 (3)
  • 7Maciej Roskosz.Metal magnetic memory testing of welded joints of ferritic and austenitic steels[J]. NDT and E International . 2011 (3)
  • 8Atefeh Dehghani Ashkezari,Hui Ma,Tapan K. Saha, et al.Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers. IEEE Transactions on Dielectrics and Electrical Insulation . 2013

同被引文献195

引证文献7

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部