期刊文献+

基于Python的推荐系统相似性分析和协同过滤 被引量:2

Similarity Analysis and Collaborative Filtering in Recommendation System Based on Python
下载PDF
导出
摘要 推荐系统是根据用户在电子商务网站上的购买和浏览记录,将用户感兴趣的物品主动推荐给用户。有两种主要的推荐方法,一种是基于用户相似的推荐,一种是基于项目相似的推荐。文中介绍了计算用户或项目的相似程度的常用方法,诸如欧式距离、曼哈顿距离、皮尔逊相关系数、余弦相关性等算法。在本章的最后,还给出了一个基于项目协同过滤的推荐系统的Python分析和计算。 According to user’s purchasing history and browsing records on e-commerce web sites, the recommender system will recommend the user’s interested items to the user. There are two main recommendations, one based on the similarity of the user, the other based on the similarity of the item. Common algorithms of calculating the similarity of the user or item, such as Euclidean distance, Manhattan distance, Pearson correlation coefficient and Cosine similarity is introduced. In the end of this paper, the analysis and calculation of an item-based collaborative filtering recommendation system with Python is also given.
作者 易顺明
机构地区 沙洲职业工学院
出处 《沙洲职业工学院学报》 2015年第1期3-7,共5页 Journal of Shazhou Professional Institute of Technology
关键词 PYTHON 推荐系统 相似性分析 协同过滤 Python recommender systems similarity analysis collaborative filtering
  • 相关文献

参考文献2

  • 1Beer reviews datasets. https://s3.amazonaws.com/demo-datasets .
  • 2D. Lemire,A. Maclachlan.Slope One Predictors for Online Rating-Based Collaborative Filtering. SIAM Data Mining . 2005

同被引文献4

  • 1R Agrawal, Imielinski T, Swanmi A. Mining association rules between sets of items in large database [C] //Proceedings of the ACM SIGMOD Conference on Management of Data, ! 993:207-216.
  • 2玫瑰甜心.关联规则算法Apriori的学习与实现[EB/OL].(2011-07-18).[2016-04-02].http://blog.sina.com.cn/s/blog_591a31d20100rqw4.html.
  • 3Tom Brijs, Bart Goethals, Gilbert Swinnen. A data mining framework for optimal product selection in retail supermarket data: the generalized PROFSET model [C] //Proceedings of the ACM 7th International Conference on Knowledge Discovery & Data Mining, 2003.
  • 4肖胜刚,袁方,安海宁.Python课程助力计算思维和创新能力培养[J].计算机教育,2017(9):11-14. 被引量:19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部