期刊文献+

计算机磁头/磁盘超薄气膜润滑压强的算子分裂算法 被引量:8

Operator-Splitting Method to Calculate Pressure of Ultra-Thin Gas Film of Magnetic Head/Disk
下载PDF
导出
摘要 以任意拉森数的超薄气体润滑方程为基础,采用算子分裂法和非结构三角网格的有限元法计算Ω型磁头的空气轴承气垫面(ABS)气膜压强分布、气浮力和纵倾力矩;在分析比较流量系数的各种算法的基础上,确定采用多项式拟合数据库计算流量系数.计算结果表明:采用算子分裂法可以有效克服在高轴承数时的数值不稳定性,消除数值振荡;在小轴承数时,气浮力随轴承数增加而增大,当轴承数增大到某一数值后,气浮力趋近某一稳定值,此时气膜压强分布与磁头造型基本一致;气膜的纵倾力矩在轴承数的某一临界值附近出现最大值. Operatorsplitting and finite element method with unstructured triangular grids were used to calculate the gas pressure distribution of the air bearing slider of a Ωtype magnetic head/disk, based on the gas lubrication equation with arbitrary Knudsen number. The gas lift and pitch moment were also calculated in the same manner. The polynomial fitted database was applied to calculate the flow rate coefficients, based on the comparison of the flow rate coefficients calculated with various algorithms. The numerical results indicated that at a high bearing number, the numerical stability was effectively increased and the spurious oscillations eliminated making use of the operatorsplitting/finite element method. At a small bearing number, the gas lift rapidly increased with increasing bearing number and approached a stable value at a certain bearing number, while the gas pressure profile in this case was consistent with the slider geometry and the gas pitch moment reached a maximum around the critical bearing number.
出处 《摩擦学学报》 EI CAS CSCD 北大核心 2003年第5期402-405,共4页 Tribology
基金 国家自然科学基金资助项目(10072022).
关键词 空气轴承气垫面(ABS) 超薄气体润滑 算子分裂法 有限元法 air bearing slider (ABS) ultra-thin gas film lubrication operator-splitting method finite element method
  • 相关文献

参考文献13

  • 1吴建康,李安锋.螺旋槽液体润滑轴承油膜压力的算子分裂法计算[J].摩擦学学报,2000,20(5):370-373. 被引量:6
  • 2Burgdorfer A. The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearing[J].ASME Journal Basic Engineering, 1959, 81 (1): 94-100.
  • 3Hsia Y T, Domoto G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearing at ultralow clearance[J]. ASME Journal of Tribology, 1983, 105 (1) :120-130.
  • 4Mitsuya Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1. 5-order slip-flow model and considering surface accommodation coefficient [J]. ASME Journal of Tribology, 1993, 115, 289-294.
  • 5Fukui S, Kaneko R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation : First report--Derivation of a generalized lubrication equation including thermal creep flow[J]. ASME Journal of Tribology, 1988,110: 253-261.
  • 6Fukui S. A Database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems [J]. ASME Journal of Tribology, 1990, 112 z ~7~8-83.
  • 7Hsing-Sen, Hsiao S. Ultra-thin liquid lubrication of magnetic head-rigid disk interface for near-contact recording: Part I. A closed-form solution to the Reynolds equation [J]. ASME Journal of Tribology, 1996, 118:388-401.
  • 8Devendra S Chhabra, Sanford A Bolasna, et al. Air bearing considerations for constant fly height applications [J]. IEEE Transaction of Magnetic, 1994, 30 (2) : 417-423.
  • 9Masaaki Matsumoto, Yoshinori Takeucchi. Design and performance of novel air bearing slider [J]. IEEE Transaction of Magnetic, 1994, 30 (6): 4 158-4 160.
  • 10Kang Tae-Sik, Choi Dong-Hoon, Jeong Tae-Gun. Optimal design of HDD air-lubricated slider bearings for improving dynamic characteristics and operating performance[J]. ASME Journal of Tribology, 2001, 123:541-547.

二级参考文献2

共引文献5

同被引文献53

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部