摘要
研究了二元高阶离散系统xn=A+yn-q/xn-p,yn=A+xn-p/yn-q的振荡性、有界性及收敛性,由于二元系统的任一正解(xn,yn)∈S={(x,y)|(x-A)(y-A)=1,x>0,y>0},由此得出了两个一元高阶离散系统:xn=A+A/xn-p+1yn-q(yn-p-A)在平衡点的全局渐xn-p(xn-q-A),yn=A+A/yn-q+1近稳定性.
In this paper, we study oscillatory, bounded, and convergence of the second dimensional discrete system xn=A+yn-q/xn-p,yn=A+xn-p/yn-p with any positive solution (xn,yn)∈S={(x,y)|(x-A)(y-A)=1,x>0,y>0}. As a consequence, we proved that the globally asymptotically stability of unique positive equilibrium of the one dimensional discrete systems xn=A+A/xn-p+1xn-p(xn-q-A),yn=A+A/yn-q+1yn-q(yn-p-A).
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
2003年第5期468-470,共3页
Journal of Sichuan Normal University(Natural Science)
关键词
离散系统
振荡性
有界性
渐近稳定性
Discrete system
Oscillatory
Bounded
Asymptotically stablity