摘要
利用行处理法和分治策略给出一种求解任意线性代数方程组AX=b(A∈Rn×m)的迭代分治算法,证明算法对任意的相容性线性代数方程组收敛,并探讨算法的加速技术及其在线性代数方程组MIMD并行迭代算法研究中的应用前景.
By using the row action method and the dividingconquering strategy, this paper puts forward an iterative dividingconquering algorithm to solve arbitrary systems of linear algebraic equations AX=b(A∈Rn×m). It is proved that the algorithm is convergent for arbitrary consistent systems of linear algebraic equation. The acceleration techniques of the algorithm and its prospective application to MIMD parallel iterative algorithm for the system of linear algebraic equations are discussed.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
2003年第5期471-474,共4页
Journal of Sichuan Normal University(Natural Science)
基金
中国工程物理研究院科学技术基金资助项目(20020656)
关键词
线性代数方程组
行处理法
分治策略
MIMD并行迭代算法
System of linear algebraic equations
Row action method
Dividing-conquering strategy
MIMD parallel iterative algorithm