摘要
讨论了如下具有椭圆性质的耗散非线性发展方程组Cauchy问题解的整体存在性和渐近行为:ψt=-(1-α)ψ-θx+αψxx,θt=-(1-α)θ+υψx+2ψθx+αθxx,具有初值(ψ,θ),(x,0)=(ψ0(x),θ0(x))→(ψ±,θ±),x→±∞,其中α和υ是正常数且满足条件:α<1,υ<α(1-α).
In this paper, we study the global existence and the asymptotic behavior of the solutions to Cauchy problem for the following nonlinear evolution equations with ellipticityψt=-(1-α)ψ-θx+αψxx, θt=-(1-α)θ+υψx+2ψθx+αθxx,with initial data(ψ,θ)(x,0)=(ψ0(x),θ0(x))→(ψ±,θ±), x→±∞,where α and υ are positive constants such that α<1, υ<α(1-α).
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第3期277-281,共5页
Journal of Central China Normal University:Natural Sciences
基金
The research was supported by the Natural Science Foundation of China(1 0 1 71 0 3 7).
关键词
渐近行为
能量方法
校正函数
先验估计
asymptotic behavior
energy method
correct function
a prior estimate