期刊文献+

关于图中控制数γ_L,γ_t的关系

The relation on dominating number γ_L,γ_t in graph
下载PDF
导出
摘要 G(V,E)是一个图且D V,如果N[D]=V,则称D为图G的控制集.进一步,对任一个控制集D1而言均有γ(〈D〉)≤γ(〈D1〉)成立,则称D为图G的小控制集,且小控制数γL(G)=min{|D|:D V且D是G的一个小控制集}.如果点集S V, X∈V均有N(X)∩S≠ 或∪N(x)=V,则称S为图G的全控制集,且全控制数γt(G)=min{|S|:S是G的一个全控制集}.x∈S本文证明:在树T中如果阶n≥2,则有γL(T)≤32γt(T)-1. Let G(V,E) be a graph and DV. If N=V,then we call D a dominating set of G. Furthermore, for any other dominating set D1, if γ(<D>)≤γ(<D1>), then we call D a least dominating set of G, and the least dominating number γL(G)=min{|D|:DV and D is a least dominating set of G}. If SV,X∈V N(X)∩S≠ or ∪x∈SN(x)=V, then we call S a total dominating set of G. The total dominating number γt(G)=min{|S|:S is a total dominating set of G}. This paper proves: any Tree T of order n≥2,γL(T)≤32γt(T)-1.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第3期282-285,共4页 Journal of Central China Normal University:Natural Sciences
基金 教育部科学技术研究重点项目(02139).
关键词 小控制集 小控制数 全控制集 全控制数 least domination set the least dominating number total domination set the total dominating number
  • 相关文献

参考文献8

  • 1吕雪征,毛经中.树T中γ_L=γ_t的若干充分条件[J].数学杂志,2002,22(2):199-202. 被引量:1
  • 2毛经中,王春香.在一类限定3-正则图中:β≥n/3[J].华中师范大学学报(自然科学版),2002,36(4):397-402. 被引量:2
  • 3Bondy J A,Murty U S R. Graph Theory with Applications [M]. Amsterdam: North-Holland, 1976.
  • 4Berge C. Graphs and Hypergraphs[M]. North-Holland. Newyork : North-Holland Pulish Co. 1973.
  • 5Cockayne E J, Hedetniemi S T, Miller D J. Properties of hereditary hypergraph and middle graphs[J]. Canada Math Bull, 1978,21:461- 468.
  • 6Favaron Odile. Least domination in a graph [J]. Discrete Math. 1996,150:115-122.
  • 7Hagnes T W, Hedetniemi S T, Slater P J. Domination in Graphs, Advanced Topics[M]. Marcel Rekker Inc, 1998.
  • 8Cockayne E J, Hedetnimi S T. Towards a theory of domination in graphs [J]. Networks, 1997(7) :249-261.

二级参考文献11

  • 1[1]J. A. Bondy and USR.Murty. Graph Theory with application[M]. Macmillan, New York, 1976.
  • 2[2]Odile Favaron. Least domination in a graph[J]. Discrete Math 1996 ,150:115~ 122
  • 3[3]E. J. Cockayne, R. M. Dawes and S.T. Hedetriemi. Total domination in graphs[J]. Networks 1980, 10:211 ~219
  • 4[4]E.Sampathkumar, The least point covering and domination numbers ofa graph[J]. Discret Math 1990, 86:137 ~142
  • 5Cockayne E J,Favaron O,Payan C,Thomason A G.Contributions to theory of domination, independence and irredundance in graphs[].Discrete Mathematics.1981
  • 6Cockayne E J,hedetnimi S T.Towards a theory of domination in graphs[].Networks.1997
  • 7Cockayne E J,Hedetniemi S T,Miller D J.Properties of hereditary hypergraph and middle graphs[].Canadian Mathematical Bulletin.1978
  • 8Dieter Rautenbach.On the difference between the upper irredundance, upper domination and independence number of a graph[].Discrete Mathematics.1999
  • 9Jerzy T,Lutz V.On graphs with equal domination and independent domination number[].Discrete Mathematics.1991
  • 10Cockayne E J,Mynhardt C M.The sequence of upper and lower domination, independence and irredundance number of a graph[].Discrete Mathematics.1993

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部