期刊文献+

非培养方法在土壤微生物生态学研究中的应用 被引量:42

Culture independent methods for studies on microbial ecology of soils
下载PDF
导出
摘要 由于有相当数量的土壤微生物是目前不可培养的 ,因此利用传统培养技术来研究土壤微生物 ,不仅费时费力 ,所得到的结果可能和真实的情况相差甚远。近年来发展了三类不需培养的方法来研究土壤微生物的种类和数量 ,这些方法大体上分为生物化学、生理学和分子生物学三类。生物化学方法主要根据细胞膜磷脂酸 (PLFA)的种类和数量来判定微生物的多样性 ;BIOLOG微量板分析系统是生理学方法的代表 ,它主要是根据土样细胞悬液对 95种单一碳源的利用模式来说明群落结构的变化 ;分子生物学方法是发展应用最广的方法 ,基本步骤是提取土壤的总DNA ,然后用通用引物或选择性高的引物来扩增 16SrRNA基因。由于对扩增产物分析方法的不同 ,该方法又可分为PCR DGGE ,PCR RFLP等。最近在PCR RFLP基础上发展起来的T RFLP分析方法 ,将微生物的多样性分析工作同RDP(ribosomaldatabaseproject)数据库结合 ,充分利用了Internet的数据资源共享的优势 ,具有分辨率高 ,可实现自动化等优点 ,是未来土壤微生物生态学研究的有力工具。 Since most species of microorganisms in soils are not cultivable in the laboratory, the investigation of their communities is a time-consuming and hard work by traditional culture procedure. Moreover, some wrong conclusions may be drawn. In the past decades, three kinds of culture-independent methods have been developed so that great progress has been made in this field. The biochemical method is to determinate the microbial communities by analysis of phospholipid fatty acids (PLFA) of cell membrane. The metabolism-based approach, through observations of the utilization patterns of 95 single-carbon sources performed on the BIOLOG microplates, can provide a lot of information about the microbial functional groups in the soils. The third method, molecular techniques, is most prevalently used to explore the microbial communities. Briefly, the molecular approach was started with the extraction and purification of total DNA from sample soils, followed by PCR-amplification of 16SrRNA gene with universal or special primers. As the analysis procedure of PCR products is different, a variety of approaches, for example, DGGE, RFLP and T-RFLP, have been established since 1990s. Among them, T-RFLP was developed based on the RFLP in 1997. This method combined ribosomal database project (RDP) into the analysis of microbial communities, and the number and constituents of species within a community were inferred just according to the number and intensity of the terminal restriction fragments of 16S rRNA gene. Performing T-RFLP is simple, with high resolution, and can be carried out automatically. Therefove it will play more and more important role in future research in microbial ecology of soils.
出处 《生态学杂志》 CAS CSCD 北大核心 2003年第5期131-136,共6页 Chinese Journal of Ecology
基金 云南省工业微生物发酵工程重点实验室开放基金项目 (KF2 0 0 1 0 1) 云南省自然科学基金项目 (2 0 0 2C0 0 0 1Q) 国家自然科学基金项目 (3 9970 14 2 ) 云南省教育厅自然科学基金重点项目资助(0 2ZD0 13 ) 中山大学教育部基因工程重点实验室开放基金资助项目
关键词 微生物多样性 磷脂酸 BIOLOG微量板分析 末端限制性酶切片段长度多态性 microbial diversity, phospholipid fatty acid, BIOLOG microplates assay, terminal restriction fragment length polymorphism.
  • 相关文献

参考文献28

  • 1东秀珠,洪俊华.原核微生物的多样性[J].生物多样性,2001,9(1):18-24. 被引量:23
  • 2杨永华,姚健.分子生物学方法在微生物多样性研究中的应用[J].生物多样性,2000,8(3):337-342. 被引量:41
  • 3陈晓蕾,张忠泽.微生物的ARDRA检测[J].微生物学杂志,1999,19(4):40-43. 被引量:14
  • 4崔雨新,王小明.分子生物学技术在环境生物学中的应用[J].自然杂志,1999,21(5):295-301. 被引量:10
  • 5Riley MS, et al. 2001. Rapid phenotypic change and diversification of a soil bacterium during 1000 generations of experimental evolution[ J ]. Microbiology, 147: 995 - 1006.
  • 6Suzuki MT, Giovannoni S J. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR [ J ]. Appl Environ Microbiol , 62 (2) : 625 - 630.
  • 7Urakawa H, Kita-Tsukamoto K, Ohwada K. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay,Japan, as determined by 16S rRNA gane analysis[J]. Microbiology, 145:3305-3315.
  • 8Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: The unseen majority[J]. Proc Natl Acad Sci , USA., 95(12):6578-6583.
  • 9Yang C, Crowley DE. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status[ J ]. Appl Environ Microbiol, 66( 1 ) : 345 - 351.
  • 10Zak CJ, et al. 1994. Functional diversity of microbial communities: a quantitatiove approach[ J ]. Soil Biol Biocfiem, 26 : 1101-1108.

二级参考文献20

  • 1黄晓华,翟道道.杜仲树皮的解剖学观测及与巴西橡胶橡胶草结构特征的比较[J].陕西林业科技,1989,13(3):30-34. 被引量:6
  • 2[1]Amann R I, Ludwig W and Schleifer K H, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews, 59:143~169
  • 3[2]Brown J R and Doolittle W F, 1997. Archaea and the prokaryote-to-eukaryote transition. Microbiology and Molecular Biology Reviews, 61(4): 456~502
  • 4[3]Bull A T, Goodfellow M and Slater J H, 1992. Biodiversity as a source of innovation in biotechnology. Annual Reviews of Microbiology, 40:219~252
  • 5[4]Cole S T and Girons I S, 1994. Bacterial genomics. FEMS Microbiology Reviews, 14:139~160
  • 6[5]Garrity G, 2000. Appendix 2: Bergey’s manual of systematic bacteriology. In: Madigan M T, Martinko J M and Parker J (eds). Brock Biology of Microorganisms (9th Ed.), Prentice Hall
  • 7[6]George and Gerald, 1996. The role of the genome project in determining gene function insights from model organisms. Cell, 86:521~529
  • 8[7]Hugenholtz P, Goebel B M and Pace N R, 1998. Mini-review: impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180(18): 4765~4774
  • 9[8]Jensen M, Webster J A and Straus N, 1993. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Applied and Environment Microbiology, 59(4):945~952
  • 10[9]Koonin E V, Mushegian A R, Galperin M Y and Walker D R, 1997. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Molecular Microbiology, 25:619~637

共引文献80

同被引文献900

引证文献42

二级引证文献599

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部