期刊文献+

基于神经网络的电站锅炉辐射受热面污染监测 被引量:14

Fouling Monitoring of Radiant Surface in Station Boiler Based on Artifical Neural Network
下载PDF
导出
摘要 对传统的BP算法采取了新的改进方案,建立了基于人工神经网络的电站锅炉辐射受热面污染监测模型,应用于华北某300MW燃煤机组,为实现锅炉受热面优化吹灰建立了基础。与同一时间段内基于热平衡的监测结果的比较证明了该方法的合理性,分析了产生差别的原因,指出了不同监测模型适用于不同性质的受热面。 The model based on artifical neural network and improved BP algorithm is presented to monitor the fouling state of radiant heat absorption surface in power station. Parts of implement results are illustrated and indicate the monitoring model is reasonable and effective. Compared to the results based on heat balance, the reasons of difference are discussed, and application objects of both models are proposed at last. Figs 4, table 1 and refs 5.
出处 《动力工程》 CSCD 北大核心 2003年第5期2660-2664,共5页 Power Engineering
关键词 电站锅炉 神经网络 辐射受热面 污染监测 BP算法 station boiler artifical neural network radiant surface fouling monitoring
  • 相关文献

参考文献2

二级参考文献3

共引文献162

同被引文献64

引证文献14

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部