期刊文献+

抗耐药金黄色葡萄球菌工程多肽—一种人工构建的抗菌蛋白质分子机器 被引量:1

Bactericidal Peptide Targeted Against Penicillin/Methicillinresistant Staphylococcus aureus──An Engineered Multidomain Protein Machine
下载PDF
导出
摘要 目的 将两个不同种来源 ,不同生物活性的蛋白质结构域构建成为一种具有靶向抗菌活性的工程多肽。方法 利用质粒重组 ,将金黄色葡萄球菌 Agr D信息素 (8肽 )基因连接在大肠菌素 Ia水性孔道结构域 (K5 4 4 -I6 2 6 )羧基端基因上 ,将重组的质粒转化入工程菌生产构建的工程多肽 ,离子交换柱纯化后经体外抗菌试验检测其抗菌活性。结果 构建的工程多肽具有强于青霉素类抗生素上百倍的抗耐药金黄色葡萄球菌的活性。结论 构建的工程多肽表现出了两个结构域前体都不具备的靶向抗金黄色葡萄球菌活性 。 Objective To construct a targeting bactericidal peptide machine by fusing two minidomains with different bioactivities and different protein origins. Methods Such fusion peptide was constructed by linking the gene of Staphylococcal AgrD pheromone with the gene of C terminal (I626) of colicin Ia pore forming region(K544 I626) with site directed mutation. Mutated plasmid was transformed into E.coli TG1 cells to produce fusion peptide, peptides were purified by CM sepharose ion exchange column. in vitro bactericidal assays were made to identify the bioactivity of fusion peptide. Results Fusion peptide presented a specific bactericidal activity which was over one hundred times as effective as that of penicillin/oxacillin against tested Staphylococcus aureus strains. Conclusion Fusion peptide behaved with a targeting bactericidal activity against Staphylococcus aureus which was lacking at two precursors, Staphylococcal pheromone and colicin Ia pore forming region. These results suggest that an engineered multidomain protein machine with specific bactericidal activity has been constructed in the present study.
出处 《四川大学学报(医学版)》 CAS CSCD 北大核心 2003年第4期605-609,共5页 Journal of Sichuan University(Medical Sciences)
基金 国家"十五"重大科技专项"创新药物和中药现代化"基金 (批准号 3 2 0 0 2 AA2 Z3 3 5 0 ) 国家自然科学基金 (批准号 3 0 2 7682 0 )资助
关键词 大肠菌素Ia水性孔道结构 细菌信息素 致死性离子通道 工程多肽 Colicin Ia pore forming region Bacterial pheromone Lethal ion channel
  • 相关文献

参考文献11

  • 1Cramer WA, Heymann JB, Schendel SL, et al. Structurefunction of the channel-forming colicins. Annu Rev Biophys BiomoI Struct, 1995 ;24 (1): 611.
  • 2Qiu XQ, Jakes KS, Kienker PK, et al. Major transmembrane movement associated with colicin Ia channel gating. J Gen Physiol, 1996; 107(3):313.
  • 3Slatin SL, Qiu XQ, Jakes KS, et al. Identification of a translocated protein segment in a voltage-dependent channel.Nature, 1994; 371(8),158.
  • 4Kienker PK, Qiu XQ, Slatin SL, et al. Transmembrane insertion of the colicin Ia hydrophobic hairpin. J Memb Biol,1997; 157(1):27.
  • 5Qiu XQ, Jakes KS, Finkelstein A, et al. Site-specific biotinylation of colicin Ia, a probe for protein conformation in the membrane. J Biol Chem, 1994; 269(3):7483.
  • 6Wiener M, Freymann D, Ohosh P, et al. Crystal structure of colicin Ia. Nature, 1997; 385 (4):461.
  • 7Ji GY, Beavis R, Novick R. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci USA, 19921 92(12):12055.
  • 8Dunny GY, Leonard AB. Cell-cell communication in grampositive bacteria. Annu Rev Microbiol, 19971 51 (1), 527.
  • 9Qiu XQ,Yu QP. Inherent TEA-binding ability of ShIR K^+ channel induces blockade in a bacterial protein toxin. Society for Neuroscience 31^st Annual Meeting, 2001 ; 812.24.
  • 10Montal M. Formation of biomolecular membranes from lipid monolayers. Methods Enzymol, 1974 t 32 (Part B), 545.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部