期刊文献+

虚拟环境中产品动态物理模型构建方法的研究 被引量:1

Research on the Construction Method of Product Dynamic Physical Model in Virtual Environment
下载PDF
导出
摘要 在虚拟环境中 ,构建的产品模型是一个包含质量、位置、重量、表面变形、表面纹理、硬度、变形模式等多维物理信息的动态物理模型。动态物理模型以直观的物理方式动态、实时响应用户操作 ,具有物理特性与几何模型和行为模型相融合的特征。用离散虚拟对象方法构建了可变形的动态物理模型 ,研究了动态曲面描述、虚拟对象离散的方法 ,对影响物理模型的主要因素进行了讨论。针对雕塑曲面建立了可变形的动态物理模型 。 In virtual environment, construction of a product model is not only a geometric model, but also a dynamic physical one including multidimensional physical information such as mass, weight, surface deformation, surface texture, hardness, deformation mode, etc. Dynamic physical model makes dynamic and real time response to user operation in a visual physical way, and is the fusion of physical characteristics, geometric model and behaviour model. A deformable dynamic physical model is established by discrete virtual object in this paper. Research was made on the methods of dynamic curved surface description and the scattering of virtual object. The major factors that influence the physical model are also discussed. A deformable dynamic physical model of sculpture surface is constructed to verify the model. This research is a valuable exploration to the construction of product dynamic physical model in virtual environment.
作者 杜静 何玉林
出处 《中国机械工程》 EI CAS CSCD 北大核心 2003年第20期1764-1766,共3页 China Mechanical Engineering
关键词 虚拟环境 动态物理模型 建模方法 虚拟设计 virtual environment dynamic physics model construction method virtual design
  • 相关文献

参考文献8

  • 1Dachille F IX, Qin H. A Novel Haptics-based Interface and Sculpting System for Physics- based Geometric Design. Computer Aided Design, 2001,33(5) :403-420.
  • 2Jansson J, Vergeest S M. A Discrete Mechanics Model for Deformable Bodies1. Computer Aided Design, 2002,34(12) :913-928.
  • 3Terzopoulos D, Fleischer K. Deformable Model.The Visual Computer,1988, 4(6):306-331.
  • 4Celniker G, Gossard D. Deformable Curve and Surface Methods for Free- from Shape Design.Computer Graphics, 1991,5(4):257-266.
  • 5Celniker G,Gossard D. Linear Constrains for Deformable B-spine Surface. In Process, Symposium on Interactive 3D Graphics, 1992,26 : 165 - 170.
  • 6Metaxas D,Terzopoulos D. Dynamics Deformable of Solid Primitives with Constraints. Computer Graphics, 1992,26 : 309-312.
  • 7Kim D S,Ryu J,Lee H C,et al. The Conversion of a Dynamic B-spline Curve Into Piecewise Polynomials in Power form. Computer Aided Design,2002,34(4) .337-345.
  • 8Podgorelec D. A New Constructive Approach to Constraint- based Geometric Design. Computer Aided Design,2002,34(11) :769-785.

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部