期刊文献+

α-shape地图虚线识别α取值研究

Reconstructing Curves in Form of Non-Continuous Map Lines Using a-shape
下载PDF
导出
摘要 给出了一种算法,适用于不光滑、由多条线组成、闭合或不闭合等特点的虚线实体的采样条件.根据采样条件所得的点集P,用合理的α值生成α-shape,再根据地图语义对其进行调整,最后实现地图虚线实体的自动识别.α值与符号识别的正确性关系密切,而α值又与地图比例尺相关,通过实验统计,得到了α值与符号识别采样规则两者间的关系模型. A new sampling condition that could be satisfied with non-smooth, disjoint, open or closed curves was formulated. However, the sampling condition can't be simply used in the ordinary algorithms. An algorithm was constructed, which can satisfy the sampling condition. Firstly, the algorithm produce the a-shape of the sample points set P with a special a value. The shape was justified by making use of the cartographic semantics. Finally, an acceptable reconstruction was obtained for any collection of the curves in form of non-continuous lines. It should be noticed that the a value corresponding to the set P is important for producing a correct reconstruction. The a value depends on the map scale. A statistical method that establishes a relationship between the a value and the map scale was presented.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2003年第5期548-552,共5页 Journal of China University of Mining & Technology
关键词 曲线重构 地图语义 α—shape α取值 地图虚线识别算法 reconstructing curves algorithm cartographic semantics a-shape
  • 相关文献

参考文献11

  • 1.地形图图式[S].北京:中国标准出版社,1998..
  • 2Edilsbrunner H,Kirkpatrick D G,Seidel R.On the shape of a set of points [J]. IEEE Transacrtions on Information Theory.1983,29(4):551—559.
  • 3Kirkpatrick D G,Radke J D.A framework for computational morphology[J].In Toussaint G T,editor,Computational Geometry,1 985:21 7—248.
  • 4Attali D. γ-regular shape reconstruction from unorganized points [J].Computational Geometry Theory and Applications,1998,10:239—247.
  • 5Edelsbrunner H.Shape reconstruction with the Delaunay complex[J].In LATIN’98:Theoretical Informatics volumes 1380 of Lecture Notes in Computer Science,1998:119—132.
  • 6Amenta N,Bern M,Eppstein D.The crust and the:Combinatorial curve reconstruction[J].Graph.Models Image Process,1998:125—135.
  • 7Gold C.Crust and anti—crust:A one—step boundary and skeleton extraction algorithm[A].Proceedings of the 1 5th Ammual ACM symposium computation Geometry[C],1999:189—196.
  • 8Dey T K,Kumar K.A simple provable algorithm for curve reconstruction[A].Proc.10th ACM—SIAM Sympos.Discrete Algorithms[C],1999:893—894.
  • 9Dey T K,Mehlhorn K,Ramos E A.Curve reconstruction:Connecting dots with good reason[J].Computational Geometry Theory and Applications,2000,15(4)1229—244.
  • 10Figueriedo L H,Gomoes J M.Computational morphology of curves[J].Visual Computer,1994,11:105—112.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部