期刊文献+

集值映射的Epi-导数及其应用(英文)

On an Epiderivative of Set-Valued Maps and Its Application
下载PDF
导出
摘要 在本文里,集值映射的Epi-导数被引入,它可以认作是实值Lipschitz函数的ClaLrke-广义方向导数的推广,同时它的一些性质也被研究.进一步地,利用这个Epi-导数集值映射的次微分被定义并研究它的性质.作为其应用,我们给出了集值优化问题的一些(必要或充分)最优性条件. An epiderivative for a set-valued map is introduced in this paper that can be regarded as an extension to Clarke generalized directional derivative for a real-valued Lipschitz function and its properties are discussed. Furthermore, the subdifferential of a general set-valued map is defined in terms of this epiderivative. As an application, some (necessary and/or sufficient) optimality conditions of set-valued optimization problems are presented based on obtained results.
出处 《运筹学学报》 CSCD 北大核心 2003年第3期45-55,共11页 Operations Research Transactions
基金 Partly supported by the State Foundations of Ph.D Units(20020141013), NSF of China(10001007) the DUT Foundations of Young Teachers No3004-893203.
关键词 集值映射 Epi-导数 应用 LIPSCHITZ函数 Clarke-广义方向导数 次微分 集值优化 OR, epiderivative, set-valued map, set-valued optimization, set-valued analysis, subdifferential, optimality conditions
  • 相关文献

参考文献14

  • 1Aubin J -P. Contingent derivatives of set-valued mappings and existence of solutions to nonlinear inclusions and differential inclusions. In: Advance in Math Suppl Studies, L Nachbin(Ed), Academic Press, New York, 1981, 160-232.
  • 2Aubin J -P. Ioffe's fans and generalized derivatives of vector-valued maps. In: Conv Anal & Optim, J -P. Aubin and R. Vinter (Ed), Pitman, London 1982, 1-18.
  • 3Aubin J -P, Ekeland I. Applied nonlinear analysis. Wiley, 1984, 401-450.
  • 4Aubin J -P., Franicowska H. Set-valued Analysis. Birkhauser Boston, 1990.
  • 5Baier J, Jahn J. On subdifferentials of setvalued maps. J Optim theory & Appl, 1999,100:233-240.
  • 6Clarke F H. Generalized gradients and applications. Trans Amer math Soc, 1975, 205: 247-262.
  • 7Clarke F H. Optimization and Nonsmooth Analysis. John Wiley and Sons, New York, 1983.
  • 8Corley H W. Optimality conditions for maximizations of set-valued functions, J of Optim Theory & Appl, 1988, 58:1-10.
  • 9Hiriart-Urruty J -B. Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math Method Oper Rea, 1979, 4:79-97.
  • 10Jahn J, Rauh R. Contingent epiderivatives and set-valued optimization. Math Method Oper Res, 1997, 46:357-380.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部