期刊文献+

关于图的上可嵌入性的一个新的邻域条件 被引量:4

For A New Neighbor Condition on Up-Embeddabilitv of Graphs
下载PDF
导出
摘要 用NG(u)表示一个图G中任意点u的邻域集. 其中K1,3,K1,3+e是G的点导出子图.本文主要证明了下述结果:设G是简单图,对L中任意两个距离为2的点u和v,即dL(u,v)=2,都有|NG(u)∩NG(v)|(?)2,则G是上可嵌入的.特别地,每个L-free图是上可嵌入的. Let NG(u) denote the neighbor set of a vertex u in K1,3,K1,3+ e is the vertices induced subgraph of G.This paper mainly prove the following result:let G be a simple graph,for any two vertices u and v of diameter 2 in L,i.e., dL(u, v) = 2,satisfiy the condition 2,then G is up-embeddable.Especially, The L - free graphs are up-embeddable.
出处 《运筹学学报》 CSCD 北大核心 2003年第3期92-96,共5页 Operations Research Transactions
基金 国家自然科学基金资助项目(69973001).
关键词 简单图 上可嵌入性 邻域条件 L-free图 BETTI亏数 最大亏格 OR, L - free graph, Neighbor, Betti deficiency, Maximum genus, Up-embeddable.
  • 相关文献

参考文献14

  • 1黄元秋,刘彦佩.关于图的最大亏格的一个定理改进[J].应用数学,1998,11(2):109-112. 被引量:46
  • 2黄元秋,刘彦佩.图的上可嵌入性[J].中国科学(A辑),1998,28(3):223-228. 被引量:16
  • 3黄元秋,刘彦佩.图的上可嵌入性的邻域条件[J].应用数学学报,1999,22(4):589-592. 被引量:5
  • 4Nordhaus E, Stewart B, White A. On the Maximum Genus of a Graph. J Combinatorial Theory B, 1971,11:258-267.
  • 5Skoviera M. The Maximum Genus of Graphs of Diameter Two. Discrete Math. 1991, 87:175-180.
  • 6Skoviera M. The Decay Number and the Maximum Genus of a Graph. Math Slovaca,1992,42(4):391-406.
  • 7Nebesky L. Every Connected, Locally Connected Graph is Upper Embeddabel. J Graph Theory, 1981, 5:205-207.
  • 8Nebesky L. On Locally Quaisconnected Graphs and Their Upper Embeddablity. Czechoslovak Math J, 1985,35:162-166.
  • 9Nedela R, Skoviera M. On Graphs Embeddable with Short Faces. Topics in Combinatorial and Graph Theory. R Bodendiek and R Henn(Eds), Physicaverlay, Heidelberg, 1990:519-529.
  • 10Skoviera M, Nedel R. The Maximum Genus of a Graph and Doubly Eulerian Trails. J U M Bollettino (Series B), 1990,4:541-551.

二级参考文献6

共引文献58

同被引文献21

  • 1任韩,吕长青,马登举,卢俊杰.关于图的余树的奇连通分支数的内插定理[J].应用数学学报,2005,28(3):546-550. 被引量:2
  • 2刘端凤,黄元秋.图的最大亏格与割点数[J].广东工业大学学报,2005,22(3):121-124. 被引量:2
  • 3黄元秋,刘彦佩.图的上可嵌入性的一些表征[J].北方交通大学学报,1996,20(1):42-49. 被引量:5
  • 4吕长青,任韩.近三角剖分图的最大亏格与1-因子[J].华东师范大学学报(自然科学版),2006(5):66-71. 被引量:3
  • 5Nordhaus E, Stewart B, White A. On the Maximum Genus of A Graph[J]. J. Combinatorial Theory B, 1971, 11 : 258 - 267.
  • 6Xuong N H. How to Dedtermine the Maximum Genus of A Graph[J]. J. Combin. Theory, ser B, 1979,26:216- 227.
  • 7Skoviera M. The Maximum Genus of Graphs of Diameter Two[J]. Discrete Math., 1991,87: 175 - 180.
  • 8Skoviera M. The Decay Number and the Maximum Genus of A Graph[J]. Math., Slovaca, 1992,42(4) :391 - 406.
  • 9Nebesky L. A New Characterization of the Maximum Genus of A graph[J]. Czechoslovak Math., J., 1981,31 (106) :604 - 613.
  • 10Fu Hung-lin, Tsai Min-chu. The Maximum Genus of Dimeter Three Graphs[J].Australasian J. Combinatorics, 1996, 14:187 - 197.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部