期刊文献+

基于核的投影寻踪方法及其在模式分类中的应用 被引量:1

The Projection Pursuit Based on Kernel and Its Application on Pattern Classiflcation
下载PDF
导出
摘要 分析了一般投影寻踪方法存在的局限和核方法在处理非线性方面所具有的优势,在此基础上结合支持向量机的最新研究成果,提出了基于核的投影寻踪方法,并将其应用到滚动轴承的质量分类中,取得了较为理想的效果。 The paper analyzes the limitation of projection pursuit and the advantage of kernel method on dealing with nonlinear problem. Combined with the latest results of research on support vector machine, the projection pursuit method based on kernel is proposed. In the end of this paper, KPP is used in the quality classification of rolling bearing.
作者 罗玮 肖健华
出处 《五邑大学学报(自然科学版)》 CAS 2003年第3期6-11,共6页 Journal of Wuyi University(Natural Science Edition)
基金 广东省自然科学基金(No.021349)
关键词 核方法 投影寻踪方法 支持向量机 模式分类 滚动轴承 质量分类 非线性投影 kernel method projection pursuit support vector machine(SVM) pattern classification
  • 相关文献

参考文献6

  • 1S Mika, G Ratsch, J Weston, et al. Fisher Discriminant Analysis with Kernels. Neural Networks for Signal Processing IX[C]. IEEE, 1999.41-48.
  • 2S Mika, B Scholkopf, A Smola, et al. Kernel PCA and De-noising in Feature Spaces[A]. Advances in Neural Processing Systems[C]. MIT Press, 1999.
  • 3C J C Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 4S Gunn. Support Vector Machines for Classification and Regression[R]. Southampton: Image Speech & Intelligent Systems Group of University of Southampton, 1997.
  • 5M Aizerman, E Braverman, L Rozonoer. Theoretical Foundations of the Potential Function Method in Pattern Recognition[J]. Automation and Remote Control, 1964, (25):821-837.
  • 6J Mercer. Functions of Positive and Negative Type and Their Connection with the Theory of Integral Equations[J]. Philos Trans Roy Soc London, 1909, A 209:415-446.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部