期刊文献+

大型稀疏非线性方程组的不精确牛顿法

Inexact Newton method for solving large and sparse systems of nonlinear equations
下载PDF
导出
摘要 将经典牛顿法与CAV(component averaging)算法结合,得到了一种易于并行的不精确牛顿法.用Broyden三对角问题和IEEE118节点的电力系统对算法进行了串行实现,并与牛顿-高斯-赛德尔法及文献[7]中的重叠分块牛顿法进行了比较. This paper proposes a new and fast inexact Newton method, called Newton-CAV method, which combines Newton method with the CAV (component averaging) algorithm suitable for solving large and sparse unstructured linear equations. The serial implementation of this method is performed on the IEEE 118-bus system and Broyden tridiagonal problem under Matlab 6.1 environment. And the numerical results are compared with both the Newton-Gauss-Seidel method and Chen's method in 2001.
出处 《延边大学学报(自然科学版)》 CAS 2003年第3期157-160,共4页 Journal of Yanbian University(Natural Science Edition)
基金 国家重点基础研究资助项目(G1998020309)
  • 相关文献

参考文献6

  • 1[1]Censor Y, Gordon D, Gordon R. Component averaging: An efficient iterative parallel algorithm for large and sparse unstructured problems[J]. Parallel Computing, 2001,27:777- 808.
  • 2[2]Demdo R S, Eisenstat S C, Steihaug T. Inexact Newton methods[J]. SIAM J Numer Anal, 1982,19:400 - 408.
  • 3[4]Alves A B, Asada E N, Monticelli A. Critical evaluation of direct and iterative methods for solving Ac = b systems in power flow calculation and contingency analysis [ J ]. IEEE Trans on Power Systems, 1999,14(2) :702 - 708.
  • 4[5]Flueck A J, Chiang H D. Solving the nonlinear power flow equations with an inexact Newton method using GMRES[J]. IEEE Trans on Power Systems, 1998,13(2):267 -273.
  • 5[6]Amano M, Zecebic A I, Siljak D D. An improved block Newton method via epsilon decompositions for load-flow calculations[J ]. IEEE Trans on Power Systems, 1996,11 (3): 1519 - 1524.
  • 6蔡大用,陈玉荣.用重叠分块牛顿法计算潮流问题[J].电力系统自动化,2001,25(23):1-3. 被引量:17

二级参考文献3

  • 1Chaniotis D,Bulk Power System Dynamics and Control IV-Restructuring,1999年
  • 2Flueck A J,IEEE Trans Power Systems,1998年,13卷,2期,267页
  • 3韩祯祥,电力系统分析,1993年

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部