期刊文献+

基于改进遗传算法的无向加权图的k点连通扩充 被引量:2

Refined Genetic Algorithm for the Augmentation of Undirected Weigh ted Graphs to k-Vertex-Connected Graphs
下载PDF
导出
摘要 加权图的连通扩充问题已被证明是NP完全问题.作者提出一种改进遗传算法来解决无向加权图的k点连通扩充问题,通过改进遗传算法中的交叉和变异操作有效地改善了群体的效果,有助于搜索解空间中新的区域,能以较大概率搜索到全局最优.仿真结果表明,该算法在原来简单遗传算法上做了进一步改善,为解决加权图的扩充问题提供了新的方法. The connected augmentation of weighted g raphs is NP hard problem that has been proved. This paper presents a refined app roach of genetic algorithm for k-vertex-connected augmentation of undirected weighted graphs. This algorithm efficiently improves the solution s in the population by improving crossover and mutation of genetic algorithm, an d helps to search new regions of the solution space, and can acquire global opti mum by bigger probability. The simulating results demonstrate that the refined g enetic algorithm is more effective than the simple genetic algorithm and makes t he results more perfect. At the same time, it provides a new way to resolve the augment of weighted graphs.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2003年第5期595-599,共5页 Journal of Tianjin University:Science and Technology
基金 教育部博士点基金资助项目(2000005634).
关键词 无向加权图 k点连通扩充 改进遗传算法 NP完全问题 图论 网络拓扑结构 连通度 undirected weighted graph k-vertex-connected augmentation refined genetic algorithm
  • 相关文献

参考文献6

二级参考文献2

  • 1匿名著者,图论及其应用,1976年
  • 2Fam Quang Bac,V. L. Perov. New evolutionary genetic algorithms for NP-complete combinatorial optimization problems[J] 1993,Biological Cybernetics(3):229~234

共引文献69

同被引文献24

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部