期刊文献+

FPK方程的近似闭合解 被引量:7

Approximation Solution of FPK Equations
下载PDF
导出
摘要 讨论了FPK方程的近似闭合解问题。假设FPK方程的解具有指数多项式的形式 ,利用比较系数的方法确定其中待定的常数。计算表明 ,本方法适用于强非线性系统 ,在特殊情形下还能求出原方程的精确解。 The probability density function (PDF) of the responses of nonlinear system excited by white noise is approximated with the exponential function of polynomial in state variable. Instead of solving FPK equation directly, the approximate PDF is substituted into FPK equation and unknown parameters are factored out. Numerical results show that the PDFs obtained with the proposed method can be very close to the exact ones regardless of the degree of system non-linearity. In some cases, even exact solution can be obtained with the proposed method.
出处 《应用力学学报》 CAS CSCD 北大核心 2003年第3期95-98,共4页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金 (10 0 72 0 49 19972 0 5 4) 广东省自然科学基金 (0 0 0 0 17)项目 上海交通大学振动 冲击 噪声国家重点实验室开放基金 (VSN 2 0 0 2 0 4)
关键词 FPK方程 近似闭合解 稳态概率密度 指数多项式 比较系数 强非线性系统 随机振动 FPK equation, probability density function, exponential function of polynomial.
  • 相关文献

参考文献17

  • 1Y K Lin. Probabilistic Theory of Structural Dynamics [ M ],McGraw-Hill, New York, 1967.
  • 2J B Roberts, P D Spanos. Random vibration and statistical linearization[M], Wiley, New York, 1990.
  • 3R N Iyengar, P K Dash. Study of the random vibration of nonlinear systems by the Gaussian closure technique [ J ], J Appl Mech. ASME, 1978, 45:393-399.
  • 4S H Crandall. Perturbation teehniques for random vibration of nonlinear systerm[J], J Acoust Soc Am ,1963, 35:1700-1705.
  • 5S A Assaf, L D Zirkie. Approximate analysis of nonlinear stochastic systems[J], Int J Control, 1976, 23:477-492.
  • 6S H Crandall.Non-Gaussian dosure for random vibration of nonlinear oscillators[J], Int J Non-Linear Mech , 1980, 15:303- 313.
  • 7N C Hampl, G I Schueller. Probability densities of the response of nonlinear substitutes under stochastic dynamic excitation [ J ], Probab Engng Mech, 1989, 4:2-9.
  • 8W Q Zhu, Y Lei. Equivalent nonlinear system method for stochastically excited and dissipated integrable Hamiltonian systems [J], ASME Journal of Applied Mechanics, 1997, 64:209-216.
  • 9G Q Cai, Y L Lin. A new approximate solution technique for randomly excited nonlinear oscillators [ J ], Int J Non-Linear Mech, 1988, 23:409-420.
  • 10W Q Zhu, Z L Huang. Lyapunov exponent and stochastic stability of quasi-integrable-Hamiltonian systems[ J ], ASME Journal of Applied Mechanics, 1999, 66:211-217.

同被引文献43

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部