期刊文献+

用任意拉格朗日——欧拉方法求解流体力学方程组 被引量:1

Arbitrary Lagrangian-Eulerian Computation for Equations of Hydrodynamics
下载PDF
导出
摘要 从积分形式的二维 Lagrange流体力学方程组出发 ,用有限体积格式进行计算 ,针对不规则的四边形网格 ,在用次级网格的方法确定网眼内物理量的梯度的基础上 ,提出一种体积加权的方法来构造网眼内的线性插值多项式。将新网格进行了细划 ,先确定新网格小网眼中心点的密度 ,将小网眼的质量直接计算出来 ,再计算新网格的质量 ,然后确定相应的密度 ,从而实现高精度重映。最后用 ALE方法进行数值模拟 。 Finite volume scheme is used for Lagrangian equations of hydrodynamics. Based on the idea of subordinate meshes, a new method of weighted volume used for constructing linear interpolation polynomials is presented. Besides, an conservative remapping algorithm in allusion to the difficulty of integrating the known density distribution in the old mesh over the cell volume. The new mesh is subdivided to calculate the densities of new smaller meshes. Then densities of the new mesh are known and high accuracy remapping is finished. Finally, series of numerical experiments are made with an arbitrary Lagrangian Eulerian (ALE) computing method and results show that the method is effective.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2003年第5期525-528,共4页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 流体力学方程组 有限体积格式 计算 拉格朗日法 解题方法 守恒重映 插值法 欧拉方法 Lagrange equation interpolation conservative remapping
  • 相关文献

参考文献6

  • 1Hirt C W, Amsden A A, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974,(14) : 227- 253.
  • 2Dukowicz J K. Conservative rezoning (remaping) for general quadrilateral meshes [ J ]. Journal of Computational Physics, 1984, (54) :411-423.
  • 3Ramshaw J D. Conservative rezoning algorithm for generalized two-dimensional meshes [J]. Journal of Computational Physics, 1985, (59) : 193- 199.
  • 4Ramshaw J D. Simplified second-order rezoning algorithm for generalized two-dimensional meshes[J].Journal of Computational Physics, 1986, (67): 214-222.
  • 5Dukowicz J K, Kodis J W. Accurate conservative rezoning ( remaping ) for arbitrary Lagrangian-Eulerian computation[J]. SIAM J Sci Stat Comput,1987,8(3) : 305-321.
  • 6Venkatakrishnan V. Convergence to steady state solutions of the Euler equations on unstructurered grids with limiters [J]. Journal of Computational Physics 1995,23 : 1 - 21.

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部