期刊文献+

用高阶剪切变形理论分析复合材料层板的中等大挠度 被引量:1

Analysis of Moderate Large Deflection of Composite Laminated Plates Using Higher-Order Shear Deformation Theory
下载PDF
导出
摘要 根据 Reddy的高阶剪切变形理论 ,用虚位移原理推导出以位移形式表达的复合材料层板的非线性控制方程及相应的边界条件。所有的位移函数均满足三边铰支一边夹紧边界条件。用 Galerkin方法把无量纲化之后的控制方程转化为一组非线性代数方程组。稳定化双共轭梯度法用于求解稀疏线性方程组 ;可调节参数的修正迭代法用于求解非线性代数方程组。 Based on the Reddy′s higher order shear deformation theory, geometrically nonlinear governing equations and their boundary conditions of composite laminated plates are obtained in the form of displacements by the virtual displacement principle. The boundary conditions in which three edges are simply supported and one edge is clamped are satisfied by all displacement functions. Galerkin′s method is used to transfer dimensionless governing equations to an infinite set of nonlinear algebraic equations. Linear equations of sparse matrix are solved by biconjugate gradients stabilized method and nonlinear algebraic equations are solved by parameter regulated iterative procedures. Numerical results of deflection and bending moment are presented for different composite materials.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2003年第5期545-551,共7页 Journal of Nanjing University of Aeronautics & Astronautics
基金 航空科学基金 ( 0 1 B5 2 0 0 7) 江西省材料科学与工程研究中心基金 ( CL0 2 0 9)资助项目
关键词 复合材料层板 高阶剪切变形理论 虚位移 非线性控制方程 边界条件 three edges simply supported and one edge clamped composite laminated plates higher order shear deformation theory geometrical nonlinearity
  • 相关文献

参考文献21

  • 1符拉索夫 薛振东 朱世靖译.壳体的一般理论[M].北京:人民教育出版社,1960..
  • 2杨加明,孙良新,雷呈凤.三边夹紧一边铰支正交各向异性矩形薄板的几何非线性分析[J].工程力学,2002,19(3):39-43. 被引量:6
  • 3符拉索夫 薛振东 朱世靖译.壳体的一般理论[M].北京:人民教育出版社,1960..
  • 4Timoshenko S,Woinowsky-Krieger S. Theory of plates and shells r M ]. New York: McGraw-Hill,1959.
  • 5Szilard R. Theory and analysis of plates[M]. Prentice-Hall, 1974.
  • 6Hearmon R F S. The frequency of flexural vibration of rectangular orthotropic plates with clamped or supported edges[J]. J of Appl Mech,1959, (12) :537-540.
  • 7Lekhnitskii R G. Theory of elasticity of an anisotropic body[M]. Moscow: Mir, 1981.
  • 8Chia C Y. Nonlinear analysis of plates[M]. New York : McGraw-Hill, 1980.
  • 9Reissner E. The effect of transverse shear deformation on the bending of elastic plates[J]. J of Appl Mech, 1945, (12) :69-77.
  • 10Mindlin R D. Influence of rotatory inertia and shear on flexural motion of isotropic,elastic plates[J]. J of Appl Mech, 1951,(18):31-38.

二级参考文献4

共引文献8

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部