期刊文献+

基于改进遗传量子算法的FIR数字滤波器设计 被引量:5

Design of FIR Digital Filter Based on Improved Genetic Quantum Algorithm
下载PDF
导出
摘要 采用改进遗传量子算法(IGQA)进行FIR数字滤波器的优化设计,将滤波器的过渡带样本值作为变量进行优化,解决了传统方法(查表法)不能保证数据最优的问题。针对遗传量子算法(GQA)在优化连续多峰函数时易出现早熟的问题,提出一种改进遗传量子算法(IGQA),典型函数测试表明,IGQA的性能优于GQA和其它几种遗传算法,收敛速度快,全局寻优能力强,能有效地克服早熟现象。采用IGQA优化设计的FIR数字低通和带通滤波器的性能较查表法得到了很大改善。 Improved genetic quantum algorithm (IGQA) is used to design FIR digital filters. Samples in transitions of filters are optimized, which solves the problem that values obtained by look-up table method (LTUM) are not optimums. Aiming at prematureness appearing easily when GQA is used to optimize continuous functions with many peaks, IGQA is proposed.The results of testing typical function and designing FIR digital filters demonstrate that IGQA is better than GQA and other GAs because IGQA has faster convergent speed and better global search capability, and IGQA can overcome premature phenomenon effectively. The performances of filters designed by IGQA are better than that of LTUM.
出处 《电讯技术》 北大核心 2003年第5期41-46,共6页 Telecommunication Engineering
基金 国家自然科学基金资助项目(69574026) 教育部骨干教师资助计划项目
关键词 遗传量子算法 FIR数字滤波器 IGQA 优化设计 频率采样法 FIR filter Design Genetic algorithm Genetic quantum algorithm
  • 相关文献

参考文献6

  • 1杨智民,王旭,庄显义.遗传算法在自动控制领域中的应用综述[J].信息与控制,2000,29(4):329-339. 被引量:62
  • 2涂承媛,涂承宇.一种新的收敛于全局最优解的遗传算法[J].信息与控制,2001,30(2):116-119. 被引量:13
  • 3Habib Youssef,Sadiq M Sait, Hakim Adiche. Evolutionary algorithms, simulated annealing and tabu search: a comparative study[J].Engineering Application of Artificial Intellegence, 2001,14: 167- 181.
  • 4Hey Tony.Quantum Computing: an introduction[J]. Computing & Control Engineering Journal, 1996,10(3):105 - 112.
  • 5Narauamam A,Moore M.Quantum-inspired genetic algorthm[ A].Proceeding of IEEE International Conference on Evolutionary Computation[C].Piscataway:IEEE Press, 1996.61 -66.
  • 6Hart Kuk- Hyun, Kim Jong - Hwan. Genetic quantum algorithm and its application to combinatorial optimization problem[A].Proceedings of IEEE International Conference on Evolutionary Computation[C].Pscataway :IEEE Press, 2000. 1354-1360.

二级参考文献27

共引文献72

同被引文献28

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部