期刊文献+

模拟多孔介质中生物化学输运的有限颗粒法的一个修正算法 被引量:2

A Modified Algorithm of FCM for Simulating Biological and Chemical Transport Process
下载PDF
导出
摘要 给出了有限颗粒法(FCM)的一个修正算法,用来模拟二维多孔介质中复杂的物理、生物化学输运现象.该算法不仅具有与早先的FCM一样的优点,而且可以在更微观的水平上保证质量守恒,获得更为准确的颗粒位置,从而有利于质量交换的高精度计算.计算结果与精确解和早先的FCM的结果做了比较. A modified algorithm of finite cell method (FCM) is presented for simulating complex physical, biological and chemical transport in porous media. It not only has the same advantages as the original finite cell method, but also can keep local mass conservation in more finer meshes, so we may get the locations of cells as well as the final results with high accuracy. Two numerical examples show the comparison between the solutions of modified FCM and original FCM and analytical solutions.
出处 《地球科学(中国地质大学学报)》 EI CAS CSCD 北大核心 2003年第5期492-496,共5页 Earth Science-Journal of China University of Geosciences
关键词 地下水污染 反应输运 生物降解 有限颗粒法 groundwater pollution reactive transport biodegradation finite cell method.
  • 相关文献

参考文献11

  • 1Bear J Z 李竟生(译).多孔介质流体动力学[M].北京:建筑工业出版社,1983.104-113.
  • 2Sun N Z. Mathematical modeling of groundwater pollution [M]. New York: Springer-Verlag, 1996.
  • 3Sun N Z. Modeling biodegradation processes in porous media by the finite cell method [J]. Water Resour Res,2002, 38(3): 1-11.
  • 4Rashid M, Kaluarachchi J J. A simplified numerical algorithm for oxygen- and nitrate-based biodegradation of hydrocarbons using Monod expressions [J]. J Contam Hydrol, 1999, 40(1):53-77.
  • 5Cirpka O A, Frind E O, Helmig R. Numerical simulation of biodegradation controlled by transverse mixing[J]. J Contam Hydrol, 1999, 40(2): 159-182.
  • 6Tompson A F B. Numerieal simulation of chemical migration in physically and chemically heterogeneous porous media[J]. Water Resour Res, 1993, 29(11): 3709-3726.
  • 7Bosma W J P, van de Zee S E A T M, van Duijn C J.Plume development of a nonlinearly adsorbing solute in heterogeneous porous formations [ J ]. Water Resour Res, 1996, 32(6). 1569-1584.
  • 8Labolle E M, Fogg G E, Tompson A F B. Randomwalk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods [J]. Water Resour Res, 1996, 32(3):583-594.
  • 9Delay F, Housset H, Porel G, et al. Transport in a 2-D saturated porous medium: A new method for particle tracking [J]. Math Geol, 1996, 28(1): 45-71.
  • 10Sun N Z. A finite cell method for simulating the mass transport process in porous media [J]. Water Resour Res, 1999, 35(12):3649-3662.

共引文献5

同被引文献12

  • 1周义朋,孙占学,马新林,邢拥国,沈红伟,陈功新.MT3DMS中混合欧拉-拉格朗日数值解法分析[J].水文,2006,26(6):38-41. 被引量:5
  • 2BearJ 李竞生 陈崇希 译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.1-570.
  • 3Sun N.-Z.. Mathematical Modeling of Groundwater Pollution [M]. Springer-Verlag, New York, 1996.
  • 4Sun N.-Z.. Modeling Biodegradation Processes in Porous Me- dia by the Finite Cell Method[J]. Water Resour. Res., 2002, 38(3): 1-11.
  • 5Sun N.-Z.. A Finite Cell Method for Simulating the Mass Transport Process in Porous Media[J]. Water Resour. Res., 1999, 35 (12): 3649-3662.
  • 6Pickens J F,Grisak G E. Scale-Dependent Dispersion in a Stratified Granular Quifer [J]. Water Resour Res,1951,17 (4):1191-1211.
  • 7Bear J著.多孔介质流体动力学[M].李竞生,陈崇希译.北京:中国建筑工业出版社,1983.
  • 8Delay F, Housset H, Porel G and de Marsily G. Transport in a 2-D saturated porous medium: A new method for particle tracking[J]. Math Geol, 1996, 28(1) : 45-71.
  • 9Sun N -Z. Mathematical modeling of groundwater pollution[ M]. New York: Springer-Verlag, 1996.
  • 10Sun N -Z. A finite cell method for simulating the mass transport process in porous medla[J]. Water Resour Res, 1999, 53(12) : 3649 -3662.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部