期刊文献+

可解多项式代数与它在阶滤子下两种分次代数的关系 被引量:1

Relationship between solvable polynomial algebra and its two kinds of graded algebra under order filtration
下载PDF
导出
摘要 针对可解多项式代数A,证明了它在阶滤子下两种分次代数grC(A)与 A均为可解多项式代数.应用Groeb ner基理论,给出了其左理想L和grC(L)与 L的Groebner基的转换. It is proved that, when A is a solvable polynomial algebra, its two kinds of graded algebra are also solvable polyonmial algebra. Using Groebner basis theory, the transfer from Groebner basis of its left ideal to that of its two kinds of graded algebra grC(L) and   under the order filtration is given.
作者 马盈仓 李骏
出处 《甘肃工业大学学报》 CAS 北大核心 2003年第3期129-132,共4页 Journal of Gansu University of Technology
关键词 可解多项式代数 阶滤子 分次代数 GROEBNER基 左理想 交换代数 整环 solvable polynomial algebra graded algebra Groebner basis
  • 相关文献

参考文献6

  • 1韦奉岐,马盈仓.Groebner基在分次代数中的应用[J].纺织高校基础科学学报,2002,15(2):128-131. 被引量:1
  • 2Li Huishi, Oystcaeyen F V. Dehomogenization of gradings to Zariskian filtrations and applications to invertible ideals[J].Prcc Amer Math Soc,1992,115(1) :1-11.
  • 3Li Huishi,Oysteaeyen F V. Zariskian Filtrations[M]. Monograph: Kluwer Academic Publishers, 1996.
  • 4Li Huishi,Wu Yuchun,Zhang Jingliang. Two applications of noncommutative Groebner basis[J].Ann Univ Ferrara-Sez-Ⅶ-Mat. , 1999 ,XLV: 1-24.
  • 5Li Huishi, Wu Yihong. Filtered-graded transfer of Groebner basis computation in solvable polynomial algebras[J]. Comm Alg, 2000,28(1) : 15-32.
  • 6Rody A K,Weispfenning V. Non-commutative Groebner basis in algebras of solvable type[J]. J Symbolic Computation,1990, (9) : 1-26.

二级参考文献4

  • 1[1]LI Huishi,WU Yuchun,ZHANG Jingliang.Two applications of noncommutative Groebner basis[J].Ann Univ Ferrara-Sez Ⅶ-Scienze Matematiche,1999,XIV;1-24.
  • 2[2]BUCHBERGER B.Ein algorithmus zum auffinden der basisselement des restklassenrings nack einem nulldimensionalen polynomideal to inrertisle ideals[D].Innsbruck,1965.
  • 3[3]MORA T.An introduction to commutative and noncommutative Groebner bases[J].Theoretical Computer Science,1994,134:131-173.
  • 4[4]GOLOD E S.Standard bases and homology algebra[A].Lecture Notes in Mathematics[C].Berlin/New York:Spring-Verlay,1988.1352:88-95.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部