摘要
引进了1-序列商映射,证明了1-序列商映射象保持sn-第一可数空间。作为这一结果的一个应用,本文证明了几乎开,闭映射保持度量空间,g-度量空间,sn-度量空间。此外本文还证明了度量空间上的1-序列商,紧映射是1-序列覆盖映射。这些结果改进并推广了广义度量空间映射象的有关理论。
In this paper, we introduce 1-sequentially quotient mappings, and prove that 1-sequentially quotient mappings preserve sn-first countable spaces. As an application of above results , we prove that almost open, closed mappings preserve metric spaces, g -metric spaces and SB-metric spaces. It is also shown that: 1-sequentially quotient, compact mapping is 1-sequentially covering mappings. These results improve and generalize the theories of images of generalized metric spaces.
出处
《数学研究》
CSCD
2003年第3期305-308,313,共5页
Journal of Mathematical Study
基金
江苏省教育厅高校科研项目(00KJB110007)