期刊文献+

q为偶数次本原单位根时量子群U_q(m,n)的分解 被引量:3

Decomposition of U_q(m,n) When q is a (2r )th Root of Unity
下载PDF
导出
摘要 研究了当q为偶数次本原单位根时 ,量子群Uq(sl2 )在关系K2r=1,Emr=0 ,Fmr=0下的商代数Uq(m ,n)的构造 ,给出Uq(m ,n)的Hopf代数结构和分次代数结构 ,给出了Uq(m ,n)的所有不同构的Verma模 ,给出了Uq(m ,n)的精确到基的理想结构。把Uq(m ,n) The restricted quantum group U q(m,n) is the quantum group U q(sl 2) with relations K r=1, E mr =0, F nr =0. If q is a ( 2r )th root of unity, the structure of U q(m,n) is different from the odd case. Hopf algebra structure and graded algebra structure of U q(m,n) is similar to the odd case,while the ideal structure is quite different. The algebra U q(m,n) is decomposed into a direct sum of principal indecomposable modules.
出处 《洛阳工学院学报》 2002年第4期95-99,共5页 Journal of Luoyang Institute of Technology
基金 河南省教委自然科学基础研究项目 (2 0 0 0 0 110 0 0 7) 洛阳工学院科学研究基金资助项目 (0 0 13 )
关键词 量子群 分解 本原单位根 商代数 Hopf代数 分次代数 代数结构 VERMA模 理想 Quantum groups Hopf algebra Decomposition Principal indecomposable modules
  • 相关文献

参考文献7

  • 1Xiao J. Restricted Representations of Ut(sl(2))-Quantizations[J]. Algebra Cooquium, 1994,1(1): 56-66.
  • 2Xiao J. Geric Modules over the Quantum Group Ut(sl(2)) at t Roots of Unity[J]. Manuscripta Math, 1994, 83: 75-98.
  • 3Xiao J. Finite Dimensional Representations of Ut(sl(2)) at Roots of Unity[J]. Can J Math. 1997,49(4): 772-787.
  • 4Suter R. Modules over Ut(sl2) [J]. Comm Math Phys, 1994,163: 359-393.
  • 5Cheng Dongming. Restricted Representations of Ut(sl2) [J]. Algebra Cooq 2000,7(4): 451-465.
  • 6程东明.量子群U_q(sl_2)的一个商代数[J].洛阳工学院学报,2001,22(1):71-73. 被引量:6
  • 7程东明,杨德伍.限制量子群U_q(sl_2)的投射模的合成序列[J].洛阳工学院学报,2002,23(2):106-110. 被引量:4

二级参考文献11

  • 1[1] Xiao J. Restricted Representations of Ut(sl(2))-Quantizations[J]. Algebra Colloquium, 1994,1(1): 56-66.
  • 2[2] Xiao J. Generic Modules over the Quantum Group at t Roots of Unity[J]. Manuscripta Math, 1994, 83: 75-98.
  • 3[3] Xiao J. Finite Dimensional Representations of Ut(sl(2)) at Roots of Unity[J]. Can J Math, 1997,49(4): 772-787.
  • 4[4] Suter R. Modules over Uq(sl2)[J]. Comm Math Phys, 1994,163: 359-393.
  • 5[5] Cheng Dongming. Restricted Representations of [J]. Algebra Colloquium, 2000,7(4): 451-465.
  • 6Suter R. Modules Over Uq(sl2)[J]. Comm Math Phys 1994,163: 359-393.
  • 7Cheng Dongming, Restricted Representations of Uq(sl2)[J]. Algebra Colloq 2000,7(4): 451-465.
  • 8Xiao J. Restricted Representations of Ut(sl(2))-Quantizations[J]. Algebra Colloquium, 1994,1(1): 56-66.
  • 9Xiao J. Generic Modules Over the Quantum Group Ut(sl(2)) at t Roots of Unity[J]. Manuscripta Math, 1994, 83: 75-98.
  • 10Xiao J. Finite Dimensional Representations of Ut(sl(2)) at Roots of Unity[J]. Can J Math,1997,49(4): 772-787.

共引文献5

同被引文献15

  • 1XIAO J. Finite Dimensional Representations of U1 (sl(2)) at Roots of Unity[J]. Can. J. Math. , 1997,49(4) : 772 -787.
  • 2XIAO J. Restricted Representations of U ( sl (2)) - Quantizations [J]. Algebra Cooquium, 1994,1 ( 1 ) : 56 - 66.
  • 3XIAO J. Geric Modules over the Quantum Group U1( sl ( 2 ) ) at t Roots of Unity [ J ]. Manuscripta Math. 1994 ( 83 ) : 75 - 98.
  • 4SYTER R. Modules over Uq ( Sl2 ) [ J]. Comm. Math. Phys. , 1994(163) : 359 - 393.
  • 5CHENG DONGMING. Restricted Representations of Uq ( sl2 ) [ J ]. Algebra Cooq. ,2000,7 (4) : 451 - 465.
  • 6Li Fang. Weak Hopf Algebras and Some New Solutions of Quantum Yang-Baxter Equation[ J]. Algebra, 1998,208:72- 100.
  • 7Li Fang, Duplij Steven. Regular Solutions of Quantum Yang-Baxter Equation from Weak Hopf algebras[J]. Czechoslovak Journal of Physics, 2001,51 (12) :1306 - 1311.
  • 8Li Fang. Duphj Steven. Weak Hopf Algebras and Singular Solutions of Quantum Yang-Baxter Equation [J]. Comm Math Phys,2002,225 : 191 - 217.
  • 9Suter R. Modules over Uq ( sl2) [J]. Comm Math Phys, 1994,163:359 - 393.
  • 10Xiao J. Finite Dimensional Representations of Uq(sl2) at Roots of Unity[J]. Can J Math, 1997,49(4):772- 787.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部