期刊文献+

语音识别的神经网络方法研究 被引量:4

An artificial neural network model study of speech-identifying
下载PDF
导出
摘要 用前馈多层神经网络方法研究了计算机对于不同语音输入者的识别能力 .输入层为语音的平均频率、均方频率、频率宽度、平均振幅、均方振幅、振幅宽度 ;输出层为识别输入者 ;隐含层的节点数为 8.最后预测结果成功率为 82 .5 % . This paper investigated speech-identifying abilities by using BP artificial neural network model.In this artificial neural network model,the input nodes were average frequency,mean-square frequency,breadth of frequency,average swing,mean-square swing,breadth of swing.The output node were speech,and the number of hidden node was 8.The accurate ratio was 82.5%.Artificial neural network model may provide a method to investigate speech-identifying.
作者 游小微
出处 《浙江师范大学学报(自然科学版)》 CAS 2002年第3期255-257,共3页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金 ( 2 98740 5 2 )
关键词 语音识别 前馈多层神经网络方法 输入层 输出层 隐含层 神经网络训练 BP artificial neural network model speech-identifying neural network training
  • 相关文献

参考文献7

  • 1Zhang L X, Xia A G, Zhao D L.Predicting chains dimesions from an artificial neural network model[J].J Polym Sci; Polym Phys. (Part B), 2000, 38: 3 163-3 167.
  • 2Hornik K, Stinchcombe M, White H. A new artificial neural network model[J]. Neural Networks, 1990(3): 551-559.
  • 3Zupan J, Gasteiger J.Neural network for chemist[M].Weinheim:Wiley-VCH Press, 1993.30-198.
  • 4Silverman R H. Image processing and pattern recognition in ultrasonograms by backpropagation [J]. Neural Networks, 1990(3): 593-603.
  • 5Hopfield J J. Neural networks and physical systems with emergent collective computational abilities [J]. Proc Natl Acad Sci U S A, 1982, 79: 2 554-2 558.
  • 6Hopfield J J. Unlearning has a stablizing effect in collective memory[J]. Nature, 1983, 304:158-159.
  • 7Waibel A. Phoneme recognition: Neural network vs. Hidden Markov models[J]. proceeding from ICASSP, 1988(13):78-85.

同被引文献31

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部