期刊文献+

NDSocTeam仿真机器人足球队的设计和实现 被引量:1

NDSocTeam: Design and Implementation
下载PDF
导出
摘要 机器人足球(RoboCup)是研究多agent系统的体系结构、多agent团队合作理论以及机器学习方法的理想测试平台.介绍了开发的仿真球队NDSocTeam系统的设计原理和实现技术.系统设计了以机器学习技术为核心的球员agent结构,并建立了一种分层学习以及多种学习技术相结合的机器学习系统.重点描述了NDSocTeam系统的总体结构、球员agent的结构以及机器学习的实现技术. RoboCup is a particularly ideal platform for studying the architecture of the multi-agent system, the multi-agent teamwork and machine learning methods. It has a great appeal to researchers in the artificial intelligence area. This paper mainly describes the infrastructure of NDSocTeam, the architecture of the agent and the realization of machine learning methods. Since the learning capability of the agent is critical to the robotic simulation team, we have designed the agent architecture focused on the machine learning aspect. First, we introduce an agent architecture in NDSocTeam that allows agents to decompose the task space. Since learning a mapping directly from agents' sensors to their actuators is intractable, the leaning tasks are hierarchically divided into four layers from the basic skill layer to the strategy layer. Different machine learning methods are applied to different layers, such as the neural network, reinforcement learning, C4.5, and soon. Second, we introduce the machine learning system in NDSocTeam that is featured with the layered learning and the combination of various learning methods. Given a hierarchical task decomposition, the layered learning allows learning at each level of the hierarchy. Third, a new reinforcement learning algorithm in NDSocTeam, reinforcement backward propagation algorithm (RBPA), is discussed. On the basis of the feed-backward neural network representing the value function, RBPA is used to exploit the most optimal policy. This is done because the state space is continuous and therefore has inherently lots of state-action pairs. Finally, established with the specific agent architecture and layered machine learning system, NDSocTeam is proved to have a desirable performance when competing with the former world champion, ATTCMUnited 2000.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第5期451-458,共8页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(699051001 60003010)
关键词 仿真机器人足球队 NDSocTeam系统 AGENT系统 机器学习 系统设计 体系结构 RoboCup, agent architecture, machine learning
  • 相关文献

参考文献13

  • 1王立春,高阳,陈世福.AODE中基于强化学习的Agent协商模型[J].南京大学学报(自然科学版),2001,37(2):135-141. 被引量:14
  • 2李静,骆斌,陈兆乾,陈世福.RoboCup中基于效果操作的动态行为规划模型[J].南京大学学报(自然科学版),2003,39(5):467-475. 被引量:3
  • 3李宁 高阳 陈世福.AODE中的学习agent研究[J].南京大学学报(自然科学),2000,36(11):210-217.
  • 4Kitano H, Asada M. RoboCup: The robot world cup initiative. Proceedings of the First International Conference on Autonomous Agent. New York: ACM Press, 1997:340-347.
  • 5Stone P, Veloso M. Task decomposition, dynamic role assignment and low-bandwidth communication for real-time strategic teamwork. Artificial Intelligence, 1999, 110 (2) : 241-273.
  • 6Stone P, Veloso M. A layered approach to learning client behaviors in the RoboCup soccer server. Applied Artificial Intelligence, 1998, 12: 165-188.
  • 7Watkins C. Learning from delayed rewards. PhD thesis. Cambridge: Kings College, UK, 1989.
  • 8Stone P, Veloso M. Team-partitioned, opaque-transition reinforcement learning. Asada M, Kitano H.RoboCup-98: Robot Soccer World Cup II. Berlin: Springer Verlag, 1999:135.
  • 9Tambe M, Johnson W L, Jones R, et al. Intelligent agents for interactive simulation environments.Artificial Intelligence, 1995, 16(1):15-39.
  • 10Marsella S, Adibi J, Al-Onaizan Y, et al. Experiences acquired in the design of RobpCup teams: A comparison of two rielded teams. Autonomous Agents and Multi-agent Systems, special - on Best of agents'99. New York: ACM Press, 2001, 4: 115-129.

二级参考文献20

  • 1Kitano H, Tambe M, Stone P, et al. The RoboCup synthetic agent challenge97. Proceedings of the Fifteenth International Joint Conference on Artifidal Intelligence, 1997: 24-29.
  • 2Williams B T. Effects-based operations: Theory, application and the role of airpower, http://www. ivaz.org. uk/military/resoure/airpower/Willianms B T 02. pdf,2002.
  • 3Bell B, Santos Eugene Jr, Brown S M. Making adversary decision modeling tractable with intent inference and information fusion, http://www. atl. external., lmco. com/overview/OLDHTML/papeva/1069.pdf,2002.
  • 4Dha,D W, Chang, L W. Cooperative bayesian and case-based reasoning for solving nmlti-agent planning tasks.Technical Report. AIC- 96 - 005, Navy Center for Applied Research in Artificial Intelligence, 1996.
  • 5Breese J, Heckerman D. Decision-theoretic case-based reasoning.Proccedings of the Fifth International Workshop on Artificial Intelligence and Statistics, 1995 : 56-63.
  • 6Rodriguez A, Vadera S, Sucar L E. A probabilistic model for case-based reasoning. Leake D B, Plake Y E. Case-Based Reasoning Research and Development. Berlin: Spring-Verlag, 1997:623-632.
  • 7Tirri H, Kontkanen P, Myllymaksi P. A Bayesian framework for case-based reasoning. Smith I, Faltings B. Advances in Case-Based Reasoning. EWCBR-96, 1996:413-427.
  • 8Charniak E. Bayesian networks without tears. AI Magazine, 1991, 12(4): 50--63.
  • 9Sanguesa R, Cortes U. The Bayesian agent: An incremental approach for learning agents working under uncertainty, http://citeseer. nj. nec. com/464959. html. 2002.
  • 10Wong T T, Hsu C N. Bayesian networks for Medicare expert systems, http://mist.med. org. tw/mist99/Proceeding-PDF/Microsoft% 20Word%20- %20chunnan111. 631107. pdf,2002.

共引文献15

同被引文献17

  • 1Kitano H, Tambe M, Stone P, et al. The RoboCup synthetic agent challenge97. Proceedings of the Fifteenth International Joint Conference on Artifidal Intelligence, 1997: 24-29.
  • 2Williams B T. Effects-based operations: Theory, application and the role of airpower, http://www. ivaz.org. uk/military/resoure/airpower/Willianms B T 02. pdf,2002.
  • 3Bell B, Santos Eugene Jr, Brown S M. Making adversary decision modeling tractable with intent inference and information fusion, http://www. atl. external., lmco. com/overview/OLDHTML/papeva/1069.pdf,2002.
  • 4Dha,D W, Chang, L W. Cooperative bayesian and case-based reasoning for solving nmlti-agent planning tasks.Technical Report. AIC- 96 - 005, Navy Center for Applied Research in Artificial Intelligence, 1996.
  • 5Breese J, Heckerman D. Decision-theoretic case-based reasoning.Proccedings of the Fifth International Workshop on Artificial Intelligence and Statistics, 1995 : 56-63.
  • 6Rodriguez A, Vadera S, Sucar L E. A probabilistic model for case-based reasoning. Leake D B, Plake Y E. Case-Based Reasoning Research and Development. Berlin: Spring-Verlag, 1997:623-632.
  • 7Tirri H, Kontkanen P, Myllymaksi P. A Bayesian framework for case-based reasoning. Smith I, Faltings B. Advances in Case-Based Reasoning. EWCBR-96, 1996:413-427.
  • 8Charniak E. Bayesian networks without tears. AI Magazine, 1991, 12(4): 50--63.
  • 9Sanguesa R, Cortes U. The Bayesian agent: An incremental approach for learning agents working under uncertainty, http://citeseer. nj. nec. com/464959. html. 2002.
  • 10Wong T T, Hsu C N. Bayesian networks for Medicare expert systems, http://mist.med. org. tw/mist99/Proceeding-PDF/Microsoft% 20Word%20- %20chunnan111. 631107. pdf,2002.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部