期刊文献+

三维Ginzburg-Landau方程的吸引子的分形结构(英文) 被引量:1

The fractal structure of attractor for complex Ginzburg-Landau equation in three-dimensions
下载PDF
导出
摘要 构造并证明了三维Ginzburg-Landau方程(CGL)ut=ρu+(1+iγ)Δu-(1+iμ)|u|2σu整体吸引子紧的分形结构的存在性,进一步得到了吸引子的一个指数型的紧的分形局部化逼近序列,从而改进并精细了该方程关于吸引子的有关结果. In this paper,the complex GinzburgLandau equation(CGL) in three spatial dimensions ut=ρu+(1+iγ)Δu-(1+iμ)|u|2σu is considered.The compact fractal structure of global attractor of CGL equation had been constructed and proved.Furture,an exponentially approximating sequence of compact fractal localizing sets of attractor had been found out. Therefore,the result about the attractor of CGL equation have been improved and sharped.
出处 《广西大学学报(自然科学版)》 CAS CSCD 2003年第3期218-224,共7页 Journal of Guangxi University(Natural Science Edition)
基金 Supported by Science Foundation of Guangxi University(Grant No:DD0 70 5 )
关键词 Ginzburg—Landau方程 吸引子 分形结构 Ginzburg-Landau equation attractor fractal structure
  • 相关文献

参考文献1

二级参考文献9

  • 1Temam R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[].Journal of Applied Mathematics.1988
  • 2Duan J,Holmes P.On the Cauchy problem of a generalized Ginzburg-Landau equation[].Nonlinear Analysis.1994
  • 3Bartuccelli M,Constantin P,Doering C,et al.On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation[].Physica D Nonlinear Phenomena.1990
  • 4Doering C R,Gibbon J D,Levermore C D.Weak and strong solutions of the complex Ginzburg-Landau equation[].Physica D Nonlinear Phenomena.1994
  • 5Duan J,Holmes P,Titi E S.Global existence theory for a generalized Ginzburg-Landau equation[].Nonlinearity.1992
  • 6A Eden,C Foias,B Nicolaenko,R Temam.Ensembles inertiels pour des equations d’evolution dissipatives[].Comptes Rendus de l Académie des Sciences.1990
  • 7B Guo,B Wang.Finite dimensional behavior for the derivatiave Ginzburg-Landau equation in two spatial dimensions[].Physica D Nonlinear Phenomena.1995
  • 8Zhenchao Cao,Boling Guo,Bixiang Wang.Global existence theory for the two-dimensional derivative Ginzburg-Landau equation[J].Chinese Science Bulletin,1998,43(5):393-395. 被引量:4
  • 9郭柏灵,高洪俊.Finite-dimensional behavior for a generalized Ginzburg-Landau equation[J].Progress in Natural Science:Materials International,1995,5(5):89-100. 被引量:2

共引文献3

同被引文献4

  • 1毋河海.地图信息的分形描述[J].测绘通报,2001,(2):24-26.
  • 2高安秀树.分数维 [M].沈步明,常子文,译. 北京:地震出版社,1994.
  • 3Batty M.The fractal nature of geography [J].Geographical Magazine,1992,(5) :32-36.
  • 4赵韶平.军事地理信息处理及其在精确制导武器作战中的应用研究 [D].西安:西安高技术研究所,1998.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部