期刊文献+

风险管理的CVaR方法及其简化模型 被引量:12

The CVaR method of risk management and its simplified model
下载PDF
导出
摘要  VaR模型度量的是在某一置信水平下,资产损失的最高期望值,但是它没有指明一旦超过了这个期望值,资产的损失究竟是多少。1997年出现的CVaR模型弥补了这个缺陷。如果以f(x,y)表示投资组合的损益函数,其中x为资产的比例向量,y表示市场随机因素,则CVaR考察的是在f(x,y)超过了VaR值时,f(x,y)的量度问题。这种方法的一个优越之处在于,最终的求解可以转化为线性规划问题,从而具有良好的操作性,而且问题的结论不仅包含了CVaR的大小,同时也可以求出资产的VaR值以及资产组合的最佳比例。 The scale of VaR model is under certain confidence level,to compute the capital′s,but it isn′t pointed out that once the expected value of maximum loss is exceeded,how much the loss of capital will be.In 1997 the emerged CVaR model covered the defection.If f(x,y) represent the portfolio′s profit and loss function,among of which x is defined capital′s ratio,y is defined market′s random factor,so CVaR is mainly used to metric f(x,y) scale′s problem when f(x,y) exceeds VaR.The superiority of this way is the final solution may be transferred to linear program problem,and it doesn′t only include CVaR′s value but also the VaR and the portfolio′s best ratio can be computed.
出处 《河北省科学院学报》 CAS 2003年第3期134-137,共4页 Journal of The Hebei Academy of Sciences
关键词 风险管理 CVAR方法 简化模型 损益函数 投资组合 线性规划 CVaR Profit and loss function
  • 相关文献

参考文献4

  • 1Philippe Jorion. Value at Risk:The New Benchmark for Controlling Market Risk[M]. The Mcgraw-hill Companies Inc. ,1997.
  • 2R T Rockafellar,S Uryasev.Optimization of Conditional Value at Risk [J]. Journal of Risk,2000(2) :21 -41.
  • 3R T Rockafellar,S Uryasev,Conditional VaR for General Loss Distributions[ Y]. University d Florida ,Gainosville. FL 32611,2001.
  • 4C E Testmi,S Uryuev. On Relation Between Expected Regret and Conditional Value at Ristk [ Y].2000.

同被引文献66

  • 1鲁炬,谷伟,万建平,王丽丽.VaR和CVaR在金融市场风险管理中的对比研究[J].统计与决策,2004,20(8):26-27. 被引量:9
  • 2[4]FREDRIK ANDERSSON,HELMUT MAUSSER,DAN ROSEN,et al.Credit risk optimization with Conditional Value-at-Risk Criterion[J].Math.Program,2001,89:273-291.
  • 3[5]ROCKAFELLAR R T,U ryasev S.Optimization of conditional value-at-risk[J].The Journal of Risk,1999,2(3)[EB/OL].http://www.ise.ufl.edu/uryasev.
  • 4[6]BASAK S.,SHAPIRO A.Value-at-Risk based risk management:optimal policies and asset prices.The Review of Financial Studies.2001,14.371-405.
  • 5[7]STANISLAVURYASEV.Conditional Value-at-risk:Optimization Algorithms and Applications[EB/OL]. http://www.ise.ufl.edu/uryasev.
  • 6[1]Rockafellar R.T.,Uryasev S..Optimization of Conditional Valueat-Risk[J].Journal of Risk,2002,(2).
  • 7[2]Pan Z.J.,Kang L.S..An Adaptive Evolutionary Algorithms for Numerical Optimization[C].In Lecture Notes in Artificial Intelli.gence,1997.
  • 8[5]Y.W.Leung,Yuping Wang.An orthogonal genetic algorithm with quantization for global numerical optimization[J].IEEE Trans.Evolutionary Computation,2001,5(1).
  • 9[7]C.Y.Lee and X.Yao.Evolutionary Programming Using Mutations Based on the Levy Probability Distribution[J].IEEE Trans.Evolutionary Computation,2004,8(1):1-13.
  • 10[8]Holland J.H..Adaptation in Nature and Artificial System[M].Ann Arbor,Michigan:UniversilY of Michigan Press,1975.

引证文献12

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部