期刊文献+

触销式双障碍卖权价值过程分析及其定价

Analysing the Value Process of Knock-out Double-barrier Put Option and Pricing
下载PDF
导出
摘要 主要证明了在不存在交易成本的完全市场条件下连续时间欧式触销式双障碍卖权贴现到0时刻的价值过程{V(t∧τL∧τH,St∧τL∧τH);0 t T}为鞅,并且给出了对应单障碍卖权价值过程的鞅性质。同时还讨论了美式触销式双障碍卖权的定价问题,给出了任意时刻t(0 t T)其内在价值的表达式。 It is proved that the value process{V(t∧τL∧τH,St∧τL∧τH);0tT}of european continuoustime knockout doublebarrier put options is a martingale in the complete market without transaction costs, and the martingale property of singlebarrier put options is given. At the same time, the pricing problem of American knockout doublebarrier put options is also discussed, and the formula for detemining their intrinsic value at any time t(0tT)is obtained.
出处 《运筹与管理》 CSCD 2003年第5期37-41,共5页 Operations Research and Management Science
基金 安徽省软科学计划资助项目(02035034)
关键词 欧式触销式双障碍卖权 美式触销式双障碍卖权 价值过程 资本市场 马尔可夫性 定价 障碍期权 european knock-out double-barrier put options american knock-out double-barrier put options stopping times the Markov property
  • 相关文献

参考文献9

  • 1杜雪樵,汪金菊.离散时间美式期权套期及停时分析[J].运筹与管理,2002,11(6):7-11. 被引量:2
  • 2Merton R C. Theory of Rational Option Pricing[J ]. Bell Journal of Economies and Management Science, 1973,4:141-183.
  • 3Gao Bin, Huang Jing-zhi,Subrahmanyam Marti. The Valuation of American Barrier Optiom Using the Decomposition Technique[J]. Journal of Economic Dynamics and Control, 2000, 24:1783-1827.
  • 4Shreve Steven. Stochastic Calculus and Finance[ I]. lecture note. 1997.
  • 5Ioannls Karatzas, Steven Shreve. Brownian Motion and Stochastic calculus[M], springer-verlag, 1990.
  • 6Duffle Darrell. Dynamic Asset Pricing Theory[M]. Princeton University Press, 1992.
  • 7Philip Protter, Stochastic Integration and Differential Equations: A New Approach, springer-verlag[M]. 1990.
  • 8Peter Carr, Hedging Complex Barrier Options. preprint, New York University[R]. 1997.
  • 9Oksendal Bert. Stochastic Differential Equations An Introduction with Applications[M]. sprlnger-verlag, 1995.

二级参考文献8

  • 1Black F, Scholes M. The Pricing of Options and Corporate Liabilities[J]. Journal of Political Economy, 1973,81:133~155.
  • 2Merton R C. Theory of Rational Option Pricing[J]. Bell J. of Econ.. and Management Sci., 1973,4:141-183.
  • 3DEMPSTER M A H, RICHARDS D G. Pricing. American Options Fiting The Smile[J]. Mathematical Finance, Vol.10, No.2(April 2000):157-177.
  • 4CHANDRASEKHAR REDDY GUKHAL. Analytical Valuation of American Optiongs on Jump-Diffusion Processes[J]. Mathematical Finance, vol.No.1 (January,2001):97-115.
  • 5DANIEL EVOVIC.Analysis of the free boundary for the pricing of an american call option[J]. Euro.Jnl of Applied Mathematics(2001),Vol.12,:25-37.
  • 6Wolfgang Hardle, Christian M.Hafner. Discrete time option pricing with flexible volatility estimation[J]. Finance Stochast.4,189-201(2000).
  • 7LUKASI STETINER.Option Pricing In Discrete-Time Incomplete[J]. Market Models. Mathematical Finance, Vol.10,No2.2(April 2000):305-321.
  • 8Emmanuel Gobet, Emmannel Temam. Discrete time hedging errors for options with irregular payoffs[J]. Finance Stochast,5(2001):357-367.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部