期刊文献+

Signed Total Domination in Graphs 被引量:3

Signed Total Domination in Graphs
下载PDF
导出
摘要 Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed. Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed.
出处 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期319-321,共3页 北京理工大学学报(英文版)
基金 theNationalNaturalScienceFoundation(1 9871 0 36 )
关键词 total dominating function signed total dominating function signed total domination number total dominating function signed total dominating function signed total domination number
  • 相关文献

参考文献4

  • 1Bohdan Zelinka.Signed Total Domination Nnumber of a Graph[J].Czechoslovak Mathematical Journal.2001(2)
  • 2Dunbar J E,Hedetniemi S T,Henning M A,et al.Minus domination in graphs[].Discrete Mathematics.1999
  • 3Dunbar J E,Hedetniemi S T,Henning M A,et al.Signed domination in graphs[].Graph Theory Combinatorics and Applications.1995
  • 4Cockayne E J,Dawes R M,Hedetniemi S T.Total domination in graphs[].Networks.1980

同被引文献24

  • 1徐保根.关于图的符号边全控制[J].华东交通大学学报,2006,23(2):129-131. 被引量:12
  • 2J. A. Bondy, V. S. R. Murty. Graph Theory with Applications[ M ]. Elsevier, Amsterdam, 1976.
  • 3Dunbar J E, Hedetniemi S T, Henning M A, Slater P J. Signed domination in graphs [ J ]. Combinatorics, Graph Theory, Applications, 1995, ( 1 ) : 311 - 322.
  • 4Favaron O. Signed domination in regular graphs[J]. Discrete Math., 1996, 158:287- 293.
  • 5Hattingh J H, Ungerer E, Henning M A. Partial signed domination in graphs[ J]. Ars Combin., 1998,48 : 33 - 42.
  • 6Zhang Z, Xu B, Li Y, Liu L. A note on the lower bounds of signed domination number of a graph [ J ]. Discrete Math, 1999,195:295 - 298.
  • 7Matousek J. On the Signed Domination in Graphs[ J]. Combinatica, 2000, 20 : 103 - 108.
  • 8Zelinka B. Signed total domination number of a graph[J]. Czechoslovak Mathematicical Journal,2001,51:225 - 229.
  • 9Xing Hua-Ming, Sun Liang. On the lower bounds of partial signed domination number of graphs[J]. Ars Combinatoria, 2005,74 : 269 - 273.
  • 10Xing Hua-Ming, Sun Liang, Chen Xue-Gang. On a generalization of signed total dominating functions of graphs [ J]. Ars Combinatoria, 2005, 7'7 : 205 - 215.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部