期刊文献+

抛物方程的Legendre-Galerkin Chebyshev配置最小二乘法 被引量:1

Legendre-Galerkin Chebyshev Collocation Least Squares Method for Parabolic Equations
下载PDF
导出
摘要 研究抛物方程的Legendre-Galerkin-Chebyshev配置(LGC)最小二乘方法以及其多区域格式.首先通过引进通量,将原问题变成等价的一阶系统.然后对一阶系统,该方法基于Legendre-Galerkin格式,对右端源项与初值部分则采用Chebyshev插值.数值实验显示该方法具有高阶谱精度. The Legendre-Galerkin Chebyshev collocation least squares methods for parabolic equations is developed in this paper.We also consider its multi-intervals formulas.The original equation is rewritten into an equivalent first-order system by introducing a flux.The propose is based on the Legendre-Galerkin scheme,but the right hand side and the initial value terms are computed by Chebyshev collocation.Some numerical examples are given to test the accuracy of our schemes.
作者 胡晓梅 覃永辉 谢珍姝 HU Xiao-mei;QIN Yong-hui;XIE Zhen-shu(School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《聊城大学学报(自然科学版)》 2019年第1期1-5,共5页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金项目(11701119) 广西自然科学基金项目(2017GXNSFBA198053) 广西混杂计算与集成电路设计分析重点实验室开放基金课题(HCIC201607)资助
关键词 抛物方程 LEGENDRE GALERKIN Chebyshev配置 最小二乘 parabolic equations Legendre Galerkin Chebyshev collocation least squares
  • 相关文献

参考文献1

二级参考文献13

  • 1C. Bernardi and Y. Maday, Approximation Spectrales de Problémes aux Limites Elliptiques,Springer-Verlag, Paris (1992).
  • 2P.B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM Rev.,40:4 (1998), 789-837.
  • 3J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order system, Math. comp. 66 (1997), 935-955.
  • 4Z. Cai, R. D. Lazarov, T. Manteuffel, and S. McCormick, First-order system least squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal. 31 (1994), 1785-1799.
  • 5Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for second-order partial differential equations: Part II, SIAM J. Numer. Anal., 34 (1997), 425-454.
  • 6Z. Cai, T. Manteuffel, S. McCormick and J. Ruge, First-order system LL* (FOSLL*): scalar elliptic partial differential equations, SIAM J. Numer. Anal., 39 (2001), 1418-1445.
  • 7Z. Cal and B. C. Shin, The discrete first-order system least squares: the second-order elliptic partial boundary value problem SIAM J. Numer. Anal., 40 (2002), 307-318.
  • 8C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, "Spectral Methods in Fluid Dynamics", Springer-Verlag, New York (1988).
  • 9S. D. Kim, H.-C. Lee and B. C. Shin, Pseudo-spectral least-squares method for the second-order elliptic boundary value problem, SIAM J. Numer. Anal., 41:4 (2003), 1370-1387.
  • 10S. D. Kim, H.-C. Lee and B. C. Shin, Least-squares spectral collocation method for the Stokes equations, Numer. Meth. PDE., 20 (2004), 128-139.

共引文献1

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部